Fórmula de Lagrange

De Física Computacional
Revisão de 14h36min de 19 de setembro de 2011 por Tekkito (discussão | contribs) (Criou página com 'Baseado no fato de que sobre <math>N</math> pontos <math>(X_1,Y_1), (X_2,Y_2), \cdots, (X_N,Y_N)</math> passa um ''único'' polinômio de grau <math>N-1</math>, o '''Polinômio d...')
(dif) ← Edição anterior | Revisão atual (dif) | Versão posterior → (dif)
Ir para navegação Ir para pesquisar

Baseado no fato de que sobre pontos passa um único polinômio de grau , o Polinômio de Lagrange pode ser usado como fórmula de interpolação ou extrapolação:

onde

é claramente um polinômio de grau em . Tendo em vista que onde o delta de Kronecker

é fácil verificar que, de fato,. Assim, pode ser empregado para se estimar o valor de em pontos não tabulados.


Como discutido na seção Interpolação e extrapolação, é desaconselhável o uso de polinômios de grau elevado. Por isto, apenas um pequeno subconjunto dos valores tabulados, nas vizinhanças do ponto de interesse , deve ser empregado. Por exemplo, digamos que temos uma tabela com 100 pontos . Se desejamos estimar o valor de no interior da região , ao invés de construir um polinômio de grau 99, podemos, por exemplo, dividir o espaço em 25 sub-regiões e usar polinômios cúbicos em cada uma delas, utilizando apenas e.


Contudo, devemos notar que, embora a interpolação seja contínua nas interfaces das regiões, a continuidade das derivadas 1a e 2a não é garantida. Em situações em que estas propriedades importam, outras aproximações devem ser adotadas (veja, por exemplo, Spline Cúbico).


Para concluir esta este assunto, deve-se notar que a implementação numérica do polinômio de Lagrange é extremamente complicada. Como exercício, deve ser tentada a construção de uma função que calcule , a partir da fórmula acima. Por isto, o algorítmo de Neville é de grande valia na realização desta tarefa. Se aproximarmos cada intervalo por um valor constante, podemos representar esta aproximação por . Melhorando a descrição, empregando agora uma aproximação linear em cada intervalo , denotamos por , onde é o polinômio que passa exatamente sobre e:

Vemos que pode ser escrito como:

Isto sugere que há uma relação entre os polinômios de ordem com os de ordem . Para verificar isto, vamos considerar, agora, uma parábola passando extamente sobre e, que denotaremos por,:

Fatorando e somando e subtraindo , obtemos:

onde

Note que o último termo desta expressão corresponde àquele que foi subtraído após seu termo de sinal contrário ter sido somado à expressão que levou a na equação para. Rearranjando os termos acima, encontramos:

Substituindo este resultado na equação para, obtemos finalmente:

Assim, notamos que, de fato, há uma relação de recorrência bastante simples entre os polinômios que envolvem e pontos, cuja forma geral é dada por:

Por ser muito mais simples de se implementar numericamente do que a expressão original para , é esta relação de recorrência que é, de fato, utilizada em cálculos numéricos. Os erros cometidos podem ser estimados calculando-se as diferenças entre as diferentes ordens do polinômio:

e


Ao invés de se gerar a partir da relação de recorrência para , pode-se utilizar as equações acima e obter relações de recorrência para . No final, obtemos a partir destas quantidades. Este desenvolvimento é deixado como exercício.


É importante notar que em nenhum ponto da discussão foi evocada a necessidade dos pontos serem igualmente espaçados. Portanto, as fórmulas apresentadas aqui podem ser aplicadas em situações bastante gerais.



Voltar para o índice de Métodos computacionais.