Equações de Laplace e Poisson

De Física Computacional
Revisão de 18h15min de 28 de março de 2021 por Augustog (discussão | contribs)
Ir para navegação Ir para pesquisar

Grupo: Augusto M Giani e Henrique Padovani

O objetivo deste trabalho é implementar os métodos de Relaxação, Gauss-Seidel e SOR (Simultanoeus OverRelaxation) em problemas de eletroestática, resolvidos pelas equações de Laplace e Poisson. Também temos como objetivo comparar seus resultados: erro entre os métodos e a solução analítica, tempo para estabilização das soluções.


Equações de Laplace e Poisson

A Equação de Laplace descreve o Potencial Elétrico () de uma determinada região num espaço que não possui nenhuma densidade de carga elétrica (corpo carregado):

ou na sua versão em 2 dimensões:

Quando neste determinado espaço, delimitado pelas condições de contorno, existe uma densidade de carga, o campo já não se iguala mais à zero, mas sim à densidade de cargas dentro daquela região, sendo descrito agora pela Equação de Poisson:

ou na sua versão em 2 dimensões:

Método de Relaxação

Como podemos ver ambas as equações não dependem do tempo, porém podemos usar um truque para resolver estas equações aplicando o método **FTCS** (Forward Time Central Space) em uma equação parecida, e fazer a evoluçao temporal durar tempo sufiente para a solução convergir (). Esta operação é chamada de Método de Relaxação.

O que usamos para convergir à solução da Equação de Laplace foi uma equação de difusão genérica:

Fazendo , para a equação de difusão temos a intuição que dada condição inicial estacionária, a solução não diverge e "relaxa" para uma função que não depende mais do tempo:

Com isso: , e chegando assim à Equação de Laplace e possibilitando chegar na discretização da Equação de Poisson. Então basicamente utiliza-se da mesma discretização de uma equação de difusão, porém a evolução temporal só serve para convergirmos à solução da Equação de Laplace com as condições iniciais que propomos.

Métodos Computacionais:

Método de Jacobi "FTCS"

Equação de Laplace  :

Para equação de Laplace partimos de:

Discretizando, primeiro chegamos que:

Seguindo mesmo procedimento do método de FTCS, temos a mesma condição de estabilidade:

No nosso algoritmo ultizamos então obtivemos a condição de estabilidade:

Para o algoritmo de Jacobi (Relaxação) escolhemos o valor de e com isso resulta na equação final:

onde n representa o passo no tempo, i representa o passo em X e j representa o passo em Y. A constante somente representava uma similaridade com a equação de difusão para demonstrar que este valor não interfere na equação final, ele sequer aparece (portanto podemos desconsiderá-lo, como faremos na equação de Poisson).

Equação de Poisson :

Partindo de:

chegamos em:

Para nosso problema , então multiplicando os dois lados por , chegamos em:

E finalmente, aplicando a condição de estabilidade e cancelando os termos :

Método de Gauss-Seidel:

Como pode-se notar, o termo que distingue a Equação de Laplace para a Equação de Poisson é apenas o termo que soma ao lado direito da equação. Para demonstrar as próximas discretizações, as deduções foram deixadas de lado pelo fato de que são irrelevantes, tendo entendido de onde vem as equações.

O Método de Gauss-Seidel adianta (no tempo) a chegada da solução estacionária, utilizando termos que já foram calculados num passo anterior de tempo para calcular o ponto atual, respectivamente para equação de Laplace e Poisson, utilizamos na nossa implementação:

e

Método SOR, Simultanoeus Overrelaxation

Como pode-se notar nas equações (é mais intuitivo na forma discretizada da Equação de Laplace), a atualização de um ponto é feita através de uma espécie de "média" dos pontos, no tempo anterior, ao seu arredor (o ponto acima, à direita, à esquerda e abaixo O método introduz no cálculo pesos

Resultados: