Equação de Ginzburg-Landau complexa: mudanças entre as edições

De Física Computacional
Ir para navegação Ir para pesquisar
(74 revisões intermediárias por 2 usuários não estão sendo mostradas)
Linha 1: Linha 1:


== Introdução ==
A equação de Ginzburg-Landau complexa (CGLE) surgiu inicialmente em 1969 como um modelo para o inicio de instabilidades em problemas de convecção de fluídos. A partir de então, ela se tornou uma das equações não lineares mais estudadas da física, descrevendo uma variedade enorme de fenômenos como:


A equação de Ginzburg-Landau complexa surgiu inicialmente em 1969 como um modelo para o inicio de instabilidades em problemas de convecção de fluídos. A partir de então, ela se tornou uma das equações não lineares mais estudadas da física, descrevendo uma variedade enorme de fenômenos como ondas não lineares, transições de fase de segunda ordem, supercondutividade, superfluidez, condensado de Bose-Einstein.
* Ondas não lineares;
* Transições de fase de segunda ordem;
* Supercondutividade;
* Superfluidez;
* Condensado de Bose-Einstein.


\center
A equação de Ginzburg-Landau complexa, quando escrita de modo a minimizar o número de constantes, é dada pela equação abaixo:
 
<math>
\frac{\partial A}{\partial t} = (1+ic_1)\nabla^2 A + A - (1-ic_3) A|A|^2.
</math>
 
É possível deduzir a CGLE a partir do oscilador linear harmônico por meio de argumentos de simetria, encontrando a equação de Stuart-Landau, e, em seguida, considerando um sistema estendido no espaço.
 
== Dedução ==
 
[[File:Phase_space_circle.png|thumb|right|Espaço de fase do oscilador harmônico]]
 
A energia de um oscilador harmônico é expressa pela equação abaixo, onde <math>E</math> é a energia, <math>q</math> e <math>p</math> a coordenada e seu respectivo momento, <math>m</math> é a massa e <math>\omega_0</math> a frequência angular
 
<math>
E = \frac{p^2}{2m} + \frac{1}{2} m \omega_0^2 q^2.
</math>
 
Ao realizar as seguintes mudanças de variáveis, <math>q \rightarrow q/m^{1/2}</math> e <math>p \rightarrow p m^{1/2}</math>, a equação da energia produz trajetórias circulares no espaço de fase de <math>\omega_0 q</math> e <math>p</math>
 
<math>
E = \frac{p^2}{2} + \frac{1}{2}\omega_0^2 q^2.
</math>
 
Essa é uma importante simetria do oscilador harmônico linear, resultando que a sua energia é proporcional ao quadrado da amplitude de oscilação, não dependendo da fase. Isso sugere uma motivação, qual é o menor termo não linear que pode ser adicionado de modo a preservar essa simetria. Para tanto, o estado do sistema será descrito em coordenadas polares, onde <math>R</math> é a amplitude e <math>\phi</math> a fase
 
<math>
\dot{R} = 0, \quad \dot{\phi} = \omega_0.
</math>
 
Define-se, então, a variável complexa <math>A = R e^{i \phi}</math>, portanto a equação acima pode ser reescrita como
 
<math>
\dot{A} = i \omega_0 A.
</math>
 
Ao realizar a transformação de variável <math>A \rightarrow A e^{i \chi}</math>, com <math>\chi \in \mathbb{R}</math>, a equação acima permanece inalterada. Ou seja, a equação é invariante a rotações. Então, busca-se uma função não linear  <math>f(A, A^*)</math> tal que
 
<math>
\dot{A} = i \omega_0 A + f(A, A^*)
</math>
 
também seja invariante a rotações.
 
Então, perante às transformações <math>A \rightarrow A e^{i \chi}</math> e <math>A^* \rightarrow A^* e^{-i \chi}</math>, a função <math>f(A, A^*)</math> deve satisfazer
 
<math>
f(A e^{i \chi}, A^* e^{-i \chi}) = f(A, A^*) e^{i \chi},
</math>
 
para que seja possível fatorar o termo responsável pela rotação e obter novamente a equação original.
 
Considerando pequenas oscilações, é possível expandir <math>f(A, A^*)</math> em potências de <math>A</math> e <math>A^*</math> até a menor ordem possível que satisfaça a condição e que introduza uma não linearidade à equação. Com isso, obtém-se
 
<math>
f(A, A^*) = \alpha_1 A + \alpha_2 |A|^2 A, \quad \alpha_1 = \alpha_{1r} + i \alpha_{1i}, \quad \alpha_2 = \alpha_{2r} + i \alpha_{2i}
</math>
 
Utilizando o resultado encontrado e expressando em coordenadas polares por meio de <math>A = R e^{i\phi}</math>
 
<math>
\dot{R} = \alpha_{1r} R + \alpha_{2r} R^3, \quad \dot{\phi} = \omega_0 + \alpha_{1i} + \alpha_{2i} R^2.
</math>
 
Em seguida, muda-se para o referencial que gira com a mesma frequência do oscilador harmônico por meio da definição de <math>\phi = \varphi + \omega_0 t</math>. As novas equações obtidas são
 
<math>
\dot{R} = \alpha_{1r} R + \alpha_{2r} R^3, \quad \dot{\varphi} = \alpha_{1i} + \alpha_{2i} R^2.
</math>
 
 
Para encontrar a amplitude estacionária, pode-se tomar <math>\dot{R} = 0</math> na equação, o que resulta na solução trivial <math>R^{(est)} = 0</math> e <math>R^{(est)} = \sqrt{-\alpha_{1r}/\alpha_{2r}}</math>. Então, para que exista uma amplitude estacionária não nula, os sinais de <math>\alpha_{1r}</math> e de <math>\alpha_{2r}</math> devem ser opostos. Além disso, por inspeção observa-se que, caso <math>\alpha_{1r} < 0</math> e <math>\alpha_{2r} > 0</math>, pequenos valores de amplitude irão diminuir e grandes valores de amplitude irão aumentar, o que indica que a solução estacionária não trivial será instável. Portanto, define-se <math>\alpha_{1r} = \mu \sigma_1</math> para <math>\sigma_1 > 0</math>, <math>\alpha_{2i} = \mu \omega_1</math>, <math>\alpha_{2r} = -g_r</math> com <math>g_r > 0</math> e <math>\alpha_{2i} = - g_i</math>. Por fim, ao voltar para a representação no plano complexo, chega-se em
 
<math>
\dot{A} = \mu (\sigma_1 + \omega_1) A - (g_r + ig_i)|A|^2 A
</math>
 
Esta é a equação de Stuart-Landau. Para obter a equação complexa de Ginzburg-Landau, é necessário considerar um sistema espacialmente extenso, em que cada ponto é um oscilador modelado pela equação acima.....
 
== Método FTCS ==
 
Para estudar o comportamento das soluções foi utilizados o método FTCS(Foward-Time Central-Space) que consiste em discretizar a solução temporal e a solução espacial da equação, resolvemos as derivadas espaciais por uma aproximação dos pontos vizinhos ao ponto que queremos encontrar, enquanto atualizamos a parte temporal, também por uma aproximação como na parte espacial porém fazemos por uma diferenciação entre a taxa de variação (solução futura) e a solução atual.
A partir da CGLE em duas dimensões:
<math>
<math>
\frac{\partial A}{\partial t} = (1+ic_1)\nabla^2 A + A - (1-ic_3) A|A|^2
\frac{\partial A}{\partial t} = \alpha(\frac{\partial^2 A}{\partial x^2}+\frac{\partial^2 A}{\partial x^2}) + A - \beta A|A|^2.
</math>
</math>
para
<math>
\alpha = (1+ic_1); \beta = (1-ic_3)
</math>
Aplicamos o método da seguinte maneira:
<math>
\frac{A(x,y,t+\Delta t) - A(x,y,t)}{\Delta t} = \alpha(\frac{A(x+\Delta x,y,t) - 2*A(x,y,t) + A(x-\Delta x,y,t)}{\Delta x^2}+\frac{A(x,y+\Delta y,t) - 2*A(x,y,t) + A(x,y-\Delta y,t)}{\Delta y^2}) + A(x,y,t) - \beta A(x,y,t)|A(x,y,t)|^2.
</math>
<math>
\frac{A_{i,j}^{N+1} - A_{i,j}^{N}}{\Delta t} = \alpha(\frac{A_{i+1,j}^{N} - 2*A_{i,j}^{N} + A_{i-1,j}^{N}}{\Delta x^2}+\frac{A_{i,j+1}^{N} - 2*A_{i,j}^{N} + A_{i,j-1}^{N}}{\Delta y^2}) + A_{i,j}^{N} - \beta A_{i,j}^{N}|A_{i,j}^{N}|^2.
</math>
Agora reorganizando a equação para deixar o tempo futuro na esquerda e o tempo atual na direita e considerando que os passos na direção x tem o mesmo tamanho do que os na direção y (<math>\Delta y = \Delta x</math>), chegamos em :
<math>
A_{i,j}^{N+1} = A_{i,j}(1+\Delta t(1-\beta|A_{i,j}|^2))+\frac{\Delta t \alpha}{\Delta x^2}(A_{i+1,j}+A_{i-1,j}+A_{i,j+1}+A_{i,j-1} - 4*A_{i,j})
</math>
== Referências ==
[1] García-Morales, V., & Krischer, K. (2012). The complex Ginzburg–Landau equation: an introduction. Contemporary Physics, 53(2), 79–95. https://doi.org/10.1080/00107514.2011.642554
[2] H. Riecke, (2021). Methods of Nonlinear Analysis
[3] Igor S. Aranson, Lorenz Kramer, (2001). The World of the Complex Ginzburg-Landau Equation

Edição das 19h06min de 27 de abril de 2024

A equação de Ginzburg-Landau complexa (CGLE) surgiu inicialmente em 1969 como um modelo para o inicio de instabilidades em problemas de convecção de fluídos. A partir de então, ela se tornou uma das equações não lineares mais estudadas da física, descrevendo uma variedade enorme de fenômenos como:

  • Ondas não lineares;
  • Transições de fase de segunda ordem;
  • Supercondutividade;
  • Superfluidez;
  • Condensado de Bose-Einstein.

A equação de Ginzburg-Landau complexa, quando escrita de modo a minimizar o número de constantes, é dada pela equação abaixo:

É possível deduzir a CGLE a partir do oscilador linear harmônico por meio de argumentos de simetria, encontrando a equação de Stuart-Landau, e, em seguida, considerando um sistema estendido no espaço.

Dedução

Espaço de fase do oscilador harmônico

A energia de um oscilador harmônico é expressa pela equação abaixo, onde é a energia, e a coordenada e seu respectivo momento, é a massa e a frequência angular

Ao realizar as seguintes mudanças de variáveis, e , a equação da energia produz trajetórias circulares no espaço de fase de e

Essa é uma importante simetria do oscilador harmônico linear, resultando que a sua energia é proporcional ao quadrado da amplitude de oscilação, não dependendo da fase. Isso sugere uma motivação, qual é o menor termo não linear que pode ser adicionado de modo a preservar essa simetria. Para tanto, o estado do sistema será descrito em coordenadas polares, onde é a amplitude e a fase

Define-se, então, a variável complexa , portanto a equação acima pode ser reescrita como

Ao realizar a transformação de variável , com , a equação acima permanece inalterada. Ou seja, a equação é invariante a rotações. Então, busca-se uma função não linear tal que

também seja invariante a rotações.

Então, perante às transformações e , a função deve satisfazer

para que seja possível fatorar o termo responsável pela rotação e obter novamente a equação original.

Considerando pequenas oscilações, é possível expandir em potências de e até a menor ordem possível que satisfaça a condição e que introduza uma não linearidade à equação. Com isso, obtém-se

Utilizando o resultado encontrado e expressando em coordenadas polares por meio de

Em seguida, muda-se para o referencial que gira com a mesma frequência do oscilador harmônico por meio da definição de . As novas equações obtidas são


Para encontrar a amplitude estacionária, pode-se tomar na equação, o que resulta na solução trivial e . Então, para que exista uma amplitude estacionária não nula, os sinais de e de devem ser opostos. Além disso, por inspeção observa-se que, caso e , pequenos valores de amplitude irão diminuir e grandes valores de amplitude irão aumentar, o que indica que a solução estacionária não trivial será instável. Portanto, define-se para , , com e . Por fim, ao voltar para a representação no plano complexo, chega-se em

Esta é a equação de Stuart-Landau. Para obter a equação complexa de Ginzburg-Landau, é necessário considerar um sistema espacialmente extenso, em que cada ponto é um oscilador modelado pela equação acima.....

Método FTCS

Para estudar o comportamento das soluções foi utilizados o método FTCS(Foward-Time Central-Space) que consiste em discretizar a solução temporal e a solução espacial da equação, resolvemos as derivadas espaciais por uma aproximação dos pontos vizinhos ao ponto que queremos encontrar, enquanto atualizamos a parte temporal, também por uma aproximação como na parte espacial porém fazemos por uma diferenciação entre a taxa de variação (solução futura) e a solução atual. A partir da CGLE em duas dimensões:

para

Aplicamos o método da seguinte maneira:

Agora reorganizando a equação para deixar o tempo futuro na esquerda e o tempo atual na direita e considerando que os passos na direção x tem o mesmo tamanho do que os na direção y (), chegamos em :

Referências

[1] García-Morales, V., & Krischer, K. (2012). The complex Ginzburg–Landau equation: an introduction. Contemporary Physics, 53(2), 79–95. https://doi.org/10.1080/00107514.2011.642554

[2] H. Riecke, (2021). Methods of Nonlinear Analysis

[3] Igor S. Aranson, Lorenz Kramer, (2001). The World of the Complex Ginzburg-Landau Equation