Equação de Dirac: mudanças entre as edições

De Física Computacional
Ir para navegação Ir para pesquisar
m (centralizando equações)
(reestruturação da dedução)
Linha 6: Linha 6:
A fim de compatibilizar a Mecânica Quântica com a Relatividade Especial, a equação diferencial parcial é de ''primeira'' ordem tanto no tempo quanto no espaço (diferentemente da equação de Schrödinger, que é de ''segunda'' ordem no espaço). A equação de Dirac pode ser escrita de diversas formas; aqui, apresentamo-la explicitamente como um sistema de EDPs acopladas, mais conveniente para os propósitos do trabalho.
A fim de compatibilizar a Mecânica Quântica com a Relatividade Especial, a equação diferencial parcial é de ''primeira'' ordem tanto no tempo quanto no espaço (diferentemente da equação de Schrödinger, que é de ''segunda'' ordem no espaço). A equação de Dirac pode ser escrita de diversas formas; aqui, apresentamo-la explicitamente como um sistema de EDPs acopladas, mais conveniente para os propósitos do trabalho.


Assim como para a equação de Schrödinger, a construção da equação de Dirac vem a partir do operador Hamiltoniano, que descreve a evolução temporal do estado quântico em questão:
Assim como a equação de Schrödinger, a construção da equação de Dirac vem a partir do operador Hamiltoniano, que descreve a evolução temporal do estado quântico em questão:


<center>
<center>
Linha 26: Linha 26:
Assim, o Hamiltoniano é modificado para representar a medida da energia relativística total.
Assim, o Hamiltoniano é modificado para representar a medida da energia relativística total.


==Partícula livre==
=Dedução da equação de Dirac em duas dimensões=
Consideramos o Hamiltoniano
Consideraremos neste trabalho a equação de Dirac em duas dimensões, <math>x</math> e <math>y</math>. A escolha dessas coordenadas se dá pela conveniência do acoplamento das EDPs: nesse caso, as quatro equações acopladas passam a ser acopladas duas a duas, facilitando o estudo do sistema.
 
==Construção do Hamiltoniano==
Consideremos uma partícula sob ação de um potencial <math>V(\boldsymbol{x};t)</math> (onde <math>\boldsymbol{x} = (x, y, z)^{T}</math>), que afeta a energia potencial da partícula, e de um potencial "escalar" <math>V_{sc}(\boldsymbol{x};t)</math>, que afeta a massa de repouso da mesma. Seguindo uma das propostas possíveis para o Hamiltoniano, temos


<center>
<center>
<math>
<math>
H = c \boldsymbol{\alpha \cdot p} + \beta mc^2
H = c \boldsymbol{\alpha} \cdot \boldsymbol{p} + \beta(mc^2 + V_{sc}) + VI_4
</math>
</math>
</center>
</center>


onde <math>\boldsymbol{\alpha}</math> e <math>\beta</math> são matrizes adimensionais e <math>\boldsymbol{p}</math> é o vetor momento linear da partícula.
onde <math>\boldsymbol{\alpha} = \alpha_x \hat{i} + \alpha_y \hat{j} + \alpha_z \hat{k}</math>; <math>\alpha_i</math> e <math>\beta</math> são matrizes 4x4 adimensionais e <math>\boldsymbol{p}</math> é o vetor momento linear da partícula.  
 
Pode-se mostrar que <math>\boldsymbol{\alpha}</math> e <math>\beta</math> devem satisfazer certos vínculos, limitando as escolhas possíveis para essas matrizes. A escolha mais simples e usualmente adotada consiste em tomar
 
<center>
 
<math>
\beta = \begin{pmatrix} I_2 & 0 \\ 0 & -I_2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}
</math>
 
<math>
\alpha_x = \begin{pmatrix} 0 & \sigma_x \\ \sigma_x & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}
</math>
 
<math>
\alpha_y = \begin{pmatrix} 0 & \sigma_y \\ \sigma_y & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & -i \\ 0 & 0 & i & 0 \\ 0 & -i & 0 & 0 \\ i & 0 & 0 & 0 \end{pmatrix}
</math>
 
<math>
\alpha_z = \begin{pmatrix} 0 & \sigma_z \\ \sigma_z & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix}
</math>
 
</center>
 
Sendo <math>\boldsymbol{p} = -i\hbar\nabla</math>, podemos escrever o produto escalar <math>\boldsymbol{\alpha} \cdot \boldsymbol{p}</math> como
<center>
<math> \boldsymbol{\alpha} \cdot \boldsymbol{p} = -i\hbar\left(\alpha_x \frac{\partial}{\partial x} + \alpha_y \frac{\partial}{\partial y} + \alpha_z \frac{\partial}{\partial z}\right)</math>
</center>


==Partícula sob ação de um potencial==
==Partícula sob ação de um potencial==


=Método de Lax=
=Discretização=




Linha 45: Linha 75:
# The quantum theory of the electron. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, v. 117, n. 778, p. 610–624, fev. 1928.
# The quantum theory of the electron. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, v. 117, n. 778, p. 610–624, fev. 1928.
# SAKURAI, J. J. Mecânica quântica moderna. 2. ed. Porto Alegre: Bookman, 2012.
# SAKURAI, J. J. Mecânica quântica moderna. 2. ed. Porto Alegre: Bookman, 2012.
# BAO, W. et al. Numerical Methods and Comparison for the Dirac Equation in the Nonrelativistic Limit Regime. Journal of Scientific Computing, v. 71, n. 3, p. 1094–1134, jun. 2017.

Edição das 12h54min de 28 de abril de 2024

Grupo: André Luis Della Valentina, Lucas dos Santos Assmann, Vinícius Bayne Müller

Introdução

A equação de Dirac descreve uma partícula relativística de spin , como o elétron, com estrutura análoga a da equação de Schrödinger. Ela surgiu inicialmente como tentativa de explicar discrepâncias entre experimentos e teoria para o espectro do átomo de hidrogênio, possibilitando correções para o cálculo da energia do elétron em diferentes níveis (as chamadas correções de estrutura fina). Além disso, por meio dela foi possível prever a existência de antimatéria: descrevendo o elétron, ela também descreve o pósitron.

A fim de compatibilizar a Mecânica Quântica com a Relatividade Especial, a equação diferencial parcial é de primeira ordem tanto no tempo quanto no espaço (diferentemente da equação de Schrödinger, que é de segunda ordem no espaço). A equação de Dirac pode ser escrita de diversas formas; aqui, apresentamo-la explicitamente como um sistema de EDPs acopladas, mais conveniente para os propósitos do trabalho.

Assim como a equação de Schrödinger, a construção da equação de Dirac vem a partir do operador Hamiltoniano, que descreve a evolução temporal do estado quântico em questão:

onde, como anteriormente, os autovalores de correspondem aos valores possíveis de energia que o sistema pode assumir.

A mudança com relação à Mecânica Quântica não relativística acontece quando consideramos a energia relativística da partícula:

Assim, o Hamiltoniano é modificado para representar a medida da energia relativística total.

Dedução da equação de Dirac em duas dimensões

Consideraremos neste trabalho a equação de Dirac em duas dimensões, e . A escolha dessas coordenadas se dá pela conveniência do acoplamento das EDPs: nesse caso, as quatro equações acopladas passam a ser acopladas duas a duas, facilitando o estudo do sistema.

Construção do Hamiltoniano

Consideremos uma partícula sob ação de um potencial (onde ), que afeta a energia potencial da partícula, e de um potencial "escalar" , que afeta a massa de repouso da mesma. Seguindo uma das propostas possíveis para o Hamiltoniano, temos

onde ; e são matrizes 4x4 adimensionais e é o vetor momento linear da partícula.

Pode-se mostrar que e devem satisfazer certos vínculos, limitando as escolhas possíveis para essas matrizes. A escolha mais simples e usualmente adotada consiste em tomar

Sendo , podemos escrever o produto escalar como

Partícula sob ação de um potencial

Discretização

Referências

  1. The quantum theory of the electron. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, v. 117, n. 778, p. 610–624, fev. 1928.
  2. SAKURAI, J. J. Mecânica quântica moderna. 2. ed. Porto Alegre: Bookman, 2012.
  3. BAO, W. et al. Numerical Methods and Comparison for the Dirac Equation in the Nonrelativistic Limit Regime. Journal of Scientific Computing, v. 71, n. 3, p. 1094–1134, jun. 2017.