Mudanças entre as edições de "Equação de Águas Rasas"

De Física Computacional
Ir para: navegação, pesquisa
(Forma dissipativa)
(Derivação das EQs. de Águas Rasas)
Linha 176: Linha 176:
 
<math> \frac{\partial M}{\partial t} + \frac{\partial }{\partial x}\Big(\frac{M^{2}}{D}\Big) + \frac{\partial }{\partial y}\Big(\frac{MN}{D}\Big)+ gD \frac{\partial \eta}{\partial x} \frac{gn^{2}}{D^{7/3}} M(M^2 +N^2)^{1/2} = 0 \qquad (33) </math>
 
<math> \frac{\partial M}{\partial t} + \frac{\partial }{\partial x}\Big(\frac{M^{2}}{D}\Big) + \frac{\partial }{\partial y}\Big(\frac{MN}{D}\Big)+ gD \frac{\partial \eta}{\partial x} \frac{gn^{2}}{D^{7/3}} M(M^2 +N^2)^{1/2} = 0 \qquad (33) </math>
  
<math> \frac{\partial N}{\partial t} + \frac{\partial }{\partial y}\Big(\frac{N^{2}}{D}\Big) + \frac{\partial }{\partial x}\Big(\frac{MN}{D}\Big) +gD \frac{\partial \eta}{\partial x} \frac{gn^{2}}{D^{7/3}} N(M^2 +N^2)^{1/2} \qquad = 0 \qquad (34) </math>
+
<math> \frac{\partial N}{\partial t} + \frac{\partial }{\partial y}\Big(\frac{N^{2}}{D}\Big) + \frac{\partial }{\partial x}\Big(\frac{MN}{D}\Big) +gD \frac{\partial \eta}{\partial x} \frac{gn^{2}}{D^{7/3}} N(M^2 +N^2)^{1/2} = 0 \qquad (34) </math>
  
 
=== Forma Conservativa ===
 
=== Forma Conservativa ===

Edição das 10h48min de 8 de outubro de 2021

Em construção Grupo: Gabriel Schmökel, Julia Remus e Pedro Inocêncio Rodrigues Terra


Introdução

Tsunami é um fenômeno da natureza caracterizado por uma sucessão de ondas marinhas, que devido ao seu grande volume e alta velocidade, podem se tornar catastróficas ao atingir a costa. Sismos, erupções vulcânicas, deslizamentos de terra, impactos e outros movimentos submarinos são a causa para a formação deste evento, sendo a grande maioria provocado pelos movimentos das placas tectônicas.


Formação de um Tsunami

Vamos analisar a sequência de passos da formação de uma Tsunami formada a partir de um abalo sísmico:

I. A convergência das placas tectônicas, devido as correntes de convecção, faz com que existam forças de tensão entre as placas.

IMAGEM

A tensão entre as placas eventualmente ultrapassa o limite máximo, o que provoca o deslizamento brusco de uma das placas sobre a outra, gerando um grande deslocamento de volume de água na vertical. Como a tsunami ocorre em grandes profundidades, ela pode passar despercebida para um barco que navega nas proximidades, uma vez que amplitude da onda é menor.

IMAGEM

II. A onda gerada se propaga ao longo de todas as direções do plano da água.

IMAGEM

III. A medida que a onda se aproxima da superfície ela diminui sua velocidade e aumenta sua amplitude

IMAGEM

Temos o interesse de descrever fisicamente a propagação da Tsunami de acordo com a topografia da água e do mar, por essa razão não iremos estudar o efeito físico que causou o deslocamento do volume de água.

Teoria

Derivação das EQs. de Águas Rasas

Para obter as equações de águas rasas devemos partir da equação da continuidade e das equações da quantidade de movimento de Navier-Stokes:


é a densidade; p é a pressão; é o vetor velocidade do fluído, onde u,v e w são as velocidades das partículas que compõe o fluído nas direções x,y,z; é o vetor aceleração da gravidade; é o tensor tensão, onde as componentes deste tensor são as tensões normais e tangenciais de cisalhamento, expressas por , no qual indica a direção e o plano normal.

Introduzindo as condições de contorno [1] para a superfície e para a profundidade do oceano :

, onde

, onde


é o deslocamento vertical da água sobre a superfície em repouso, é o vetor velocidade do fluído nas direções horizontais x e y.

A equação da continuidade em (3) pode ser simplificada, já que a densidade do fluído no oceano não varia significativamente com o tempo e a posição.

Integrando a expressão da continuidade em (6), utilizando a regra da integral de Leibniz [1], com os limites indo de até chegamos na seguinte expressão:

Teorema de Leibniz:

Substituindo as condições de contorno da profundidade (5) em (7) obtemos:

Substituindo a condição de contorno da superfície (4) em (9):

(10) é a primeira das equações das águas rasas que obtemos, onde é o comprimento da água total do fundo do oceano até a amplitude da onda. Podemos expressar (10) através do fluxo de descarga nas direções x e y, estás quantidades estão relacionadas com as velocidades da seguinte forma [1]:

Substituindo (11) e (12) em (10) chegamos na representação do fluxo de descarga para uma das equações de águas rasas.

Escrevendo as quantidades de movimento de Navier-Stokes nas componentes x,y e z:

Na componente z em (15) negligenciamos a aceleração das partículas, pois a aceleração da gravidade é muito maior. Também tomamos como nulos as componentes e em (14) e passamos a definir .

Resolvendo equação diferencial da componente z em (16) podemos obter a pressão, a qual é hidrostática.

Substituindo a pressão em (14):

Integrando a equação (18) em relação a componente z com os limites indo

Integrando a expressão (18), utilizando a regra da integral de Leibniz [1] e as condições de contorno (4) e (5), com os limites indo de até chegamos em outra das equações de águas rasas:

Generalizando a equação (18), para a componente y, obtemos a última das equações de águas rasas:

Na representação de fluxo de cargas as expressões (18) e (19) são apresentadas respectivamente como:

Iremos escrever as equações das águas rasas considerando o tensor de estresse . Os elementos deste tensor são responsáveis por causar nas partículas tensões tangenciais e perpendiculares, onde as tensões tangenciais são representadas por elementos onde , e as perpendiculares por elementos onde

Decompondo nas componentes x,y, e z de presente em (4):

Considerando o fluído Newtoniano, então as tensões de cisalhamento serão proporcionais a uma taxa de deformação, onde a constante de deformidade é a viscosidade.

Substituindo (25),(26) em (25), integrando em relação a componente z, utilizando a regra de Leibnz e as condições de contorno (3) e (4), obtemos:

Onde é a constante de viscosidade turbulenta, é uma força de resistividade relativa ao movimento do fluído com o fundo do oceano na direção x. Podemos negligenciar a constante de turbulência na situação em que não temos inclinações abrutas no fundo do mar. [1].

Considerando que o fluído é uniforme, então a expressão para é:

é o coeficiente de fricção, porém o coeficiente de rugosidade de Manning é mais usado, alguns valores deste coeficiente são:

  • Cimento puro e metal liso
  • Terra lisa
  • Pedras, ervas daninhas
  • Péssimo relevo de canal
  • Bom relevo de canal

O coeficiente de fricção e o de rugosidade de Meanning estão relacionados por:

Substituindo (30) em (29) obtemos:

Generalizando a expressão (31) para a componente y.

Adicionando, repectivamente, (31) e (32) nas expressões (20) e (21), obtemos as equações de águas rasas considerando as forças de fricção do fundo do oceano.

Forma Conservativa

Um modelo mais simples - desconsiderando a fricção, viscosidade do líquido e as forças de Coriolis sobre ele - pode ser obtido [2][3]. Para desenvolvê-lo são necessárias algumas premissas:

  • O comprimento da onda é muito maior que as contribuições na direção
  • A aceleração na direção da velocidade na direção é zero
  • As componentes das velocidades em e em ( e ) não variam em


O sistema então pode ser descrito pelas seguintes equações:

Onde é a altura do fluido desde a base, são as velocidades médias na direções , é a constante gravitacional e é função que descreve a superfície onde acontece o movimento [1].

Forma dissipativa

As equações de águas rasas na forma não conservativa são dadas por (10),(33) e (34). Para descrever numericamente o fenômeno foi utilizado discretização por diferenças finitas, onde realizamos derivadas centradas na região espacial, e para frente no região temporal. O erro de truncamento é de ordem na região espacial, enquanto na temporal é de ordem . O método é conhecido como leap-frog method devido a discretização central na região espacial.

Discretizando a expressão (10) pelo leap-frog method:

Discretizando a expressão (33) pelo leap-frog method:

Definindo as quantidades:

Das quantidades definidades e da derivada parcial do fluxo de descarga em relação ao tempo temos a respectiva avanço temporal para M:

Generalizando a expressão anterior para o fluxo de descarga N temos:

Desenvolvimento do cálculo

Forma conservativa 2D

Para descrever numericamente o fenômeno foi utilizado discretização por diferenças finitas e o método pra frente no tempo e no espaço (FTCS). As equações discretizadas podem ser observadas abaixo.


Para os contornos foi utilizado que:

  • Nos contornos de x: , discretizando essa derivada temos que:
  • Nos contornos de y: , discretizando essa derivada temos que:

No desenvolvimento do programa não foi conseguido alcançar os resultados esperados, pois o sistema não converge: a velocidade aumenta e diminui infinitamente, fazendo com que a altura da onda aumente indefinidamente. Mesmo assim, vamos apresentar o código escrito na linguagem Python, pois não conseguimos entender o erro.

Foi cosiderada uma superfície constante e, desta forma, suas derivadas são nulas e não interferem no cálculo.

#%% Bibliotecas 
import numpy as np

import matplotlib.pyplot as plt 
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import animation
import matplotlib.patches as mpatches
from IPython.display import HTML, Image

#%% Parametros

L_xf = 10.0  # m
L_x0 = -L_xf

NX = 100

dx = (L_xf - L_x0) / NX


L_yf = 10.0  # m
L_y0 = -L_yf

NY = 100

dy = (L_yf - L_y0) / NY

N_INNER = (NX - 2) * (NY - 2)

g = 9.8 # m /s^2

# Tempo
dt = 0.002
Nt = 1000

time_interval = np.arange(0, Nt*dt, dt)

#%% Discretização do espaço x-y

x = np.linspace(L_x0, L_xf, NX-1)  
y = np.linspace(L_y0, L_yf, NY-1)
X, Y = np.meshgrid(x, y) 

#%% Condições iniciais, em distribuição gaussiana

sigma = 0.6
sigma_v = 0.6

h_2d = 0.8 * np.exp(-(((X)**2 / 2*(sigma**2)) + ((Y)**2 / 2*(sigma**2))))
u_2d = 0.1 * np.exp(-(((X)**2 / 2*(sigma_v**2)) + ((Y)**2 / 2*(sigma_v**2))))
v_2d = 0.1 * np.exp(-(((X)**2 / 2*(sigma_v**2)) + ((Y)**2 / 2*(sigma_v**2))))

#%% Vetores das variáveis anteriores e historico das variaveis

h_ant = np.copy(h_2d)
v_ant = np.copy(v_2d)
u_ant = np.copy(u_2d)

# Inicilização das listas para armazenar os valores

hist_h, hist_u, hist_v = [], [], []


Função para resolução das equações diferenciais com FTCS.

#%% Equação diferencial

# Fator de multiplicacao 
fator_x = (dt / (2*(dx)))
fator_y = (dt / (2*(dy)))

def resolve_pdes(h, vx, vy):

    """
    Função que retorna os valores de profundidade, velocidade em x e em y 
    no próximo tempo
    
    Parametros
    -----------
    h : array
                  profundidade no tempo t 
    vx : array
        velocidade em x no tempo t
      
    vy : array
        velocidade em y no tempo t
    
    Retorna
    -----------
    prox_h : array
                  profundidade no tempo t + dt
    prox_u : array
        velocidade em x no tempo t + dt
      
    prox_v : array
        velocidade em y no tempo t + dt
    
    """

    # Inicializa os vetores para armazenarem os resultados calculados
    prox_h = np.ones(shape = (np.shape(h)), dtype = np.float64)
    prox_u = np.ones(shape = (np.shape(vx)), dtype = np.float64)
    prox_v = np.ones(shape = (np.shape(vy)), dtype = np.float64)
    
        
    # Loop nos pontos discretizados 
    
    for i in range(1, NX - 1):
        for j in range(1, NY - 1):
        
            # Alturas e velocidades conforme a posicao do ponto:
            # _l : ponto a esquerda, _r: ponto a direita, _up: ponto acima, _d: abaixo
        
            # Condicao a esquerda ------------------
            if i == 1:  # primeiro x interno
                        
                h_l = h[i, j]
                u_l = -vx[i, j]
                # u_l = 0
                v_l = vy[i, j]
        
            else:
                h_l = h[i-1, j]
                u_l = vx[i-1, j]
                v_l = vy[i-1, j]
            # --------------------------------------
        
            # Condicao a direita -------------------
            if i == NX - 2:  # ultimo x interno

                h_r = h[i, j]
                u_r = -vx[i, j]
                # u_r = 0
                v_r = vy[i, j]
            
            else:
                h_r = h[i+1, j]
                u_r = vx[i+1, j]
                v_r = vy[i+1, j]
            # --------------------------------------
        
            # Condicao abaixo  ----------------------
            if j == 1:  # primeiro y interno 
                h_d = h[i, j]
                u_d = vx[i, j]
                v_d = - vy[i, j]
                # v_d = 0
            
            else:
                h_d = h[i, j - 1]
                v_d = vy[i, j - 1]
                u_d = vx[i, j - 1]
            # --------------------------------------
        
            # Condicao acima  ----------------------
            if j == NY - 2:  # utlimo y interno
            
            
                h_up = h[i, j]
                u_up = vx[i, j]
                # v_up = 0
                v_up = - vy[i, j]
            
            else:
                
                h_up = h[i, j + 1]
                v_up = vy[i, j + 1]
                u_up = vx[i, j + 1]
            # --------------------------------------


            ## Primeira Equação
        
            h_ij = h[i, j] - \
                  (h_r  * u_r  - h_l  * u_l) * fator_x - \
                  (h_up * v_up - h_d  * v_d) * fator_y 
            
            prox_h[i, j] = h_ij
        
            # ## Segunda equação
        
            hu_ij = (h[i, j] * vx[i, j]) - \
                    fator_x * (
                        ((h_r  * (u_r ** 2))  + (1/2 * g * (h_r ** 2))) -\
                        ((h_l  * (u_l ** 2))  + (1/2 * g * (h_l ** 2)))
                    ) - fator_y * (
                        (h_up * u_up * v_up ) - (h_d  * u_d  * v_d)
                    )
     
            prox_u[i, j] = hu_ij / h_ij

            # # ## Terceira Equação
        
            hv_ij = (h[i, j] * vy[i, j]) - \
                    fator_x * (
                        (h_r  * u_r * v_r) - (h_l  * u_l * v_l)
                    ) - \
                    fator_y * (
                        ((h_up * (v_up ** 2)) + (1/2 * g * (h_up ** 2))) - \
                        ((h_d  * (v_d  ** 2)) + (1/2 * g * (h_d  ** 2)))
                    )

        
            prox_v[i, j] = hv_ij / (h_ij)
    
    return prox_h, prox_u, prox_v
#%% Cálculo

# Resolve para cada passo de tempo

for t in time_interval:
    

    h, u, v = resolve_pdes(h_ant, u_ant, v_ant)  # valores das variaveis no tempo = t + dt
   
    
    # adicionar essas variáveis em listas pra conseguir plotar dps 
    hist_h.append(h); hist_u.append(u); hist_v.append(v)
    
      
    # Coloca as variaveis atuais como anteriores pro proximo calculo
    h_ant = np.copy(h)
    u_ant = np.copy(u)
    v_ant = np.copy(v)
#%% Gráfico animado

# Reorganiza os vetores para plotar

x_2d = X[0]
y_2d = Y[0]

for i in range(1,len(X)):
    
    x_2d = np.append(x_2d, X[i])
    y_2d = np.append(y_2d, Y[i])

def animate(i):
    plt.clf()  # limpa a figura, pra nao ficar sobrepondo figs
    
    # titulos
    plt.suptitle('Evolução da onda', fontsize=14)
    plt.title(f'Tempo: {round(dt*i, 3)}', fontsize=12)
    
    # plot
    plt.scatter(x_2d, y_2d, c=hist_h[0::8][i], marker='.')
    plt.colorbar()
    
    # axis


# fig = plt.figure(figsize=(16,9))
# ax = fig.gca(projection='3d')

fig, ax = plt.subplots()
ani = animation.FuncAnimation(fig, animate, frames = len(hist_h[0::8]), repeat=False, interval=0.1)

#%% Salvar o gif
ani.save('onda.gif', writer='imagemagick', fps=5)

Referências

  1. 1,0 1,1 1,2 1,3 1,4 https://docplayer.net/49487265-Lecture-8-the-shallow-water-equations.html
  2. GARCÍA-NAVARRO, P; et al. The shallow water equations: An example of hyperbolic system. Espanha: 2008. Disponível em: <https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.571.1364&rep=rep1&type=pdf>
  3. KUHBACHER, Christian. Shallow Water: Derivation and Applications. Disponível em: <http://www.mathematik.tu-dortmund.de/lsiii/cms/papers/Kuehbacher2009.pdf>