Mudanças entre as edições de "Equação de Águas Rasas"

De Física Computacional
Ir para: navegação, pesquisa
(Derivação das EQs. de Águas Rasas)
(Derivação das EQs. de Águas Rasas)
Linha 151: Linha 151:
 
Considerando que o fluído é uniforme, então a expressão para <math> \frac{\tau_x}{\rho} é </math> é:
 
Considerando que o fluído é uniforme, então a expressão para <math> \frac{\tau_x}{\rho} é </math> é:
  
<math> \frac{\tau_x}{\rho} = \frac{fM}{2D^{2}}(M^{2}+N^{2})^{1/2} \qquad (28) </math>  
+
<math> \frac{\tau_x}{\rho} = \frac{fM}{2D^{2}}(M^{2}+N^{2})^{1/2} \qquad (29) </math>  
  
<math> f </math> é o coeficiente de fricção, porém o coeficiente de rugosidade de Manning <math> n </math> é mais usado.
+
<math> f </math> é o coeficiente de fricção, porém o coeficiente de rugosidade de Manning <math> n </math> é mais usado, alguns valores deste coeficiente são:
  
  
Linha 162: Linha 162:
 
*Bom relevo de canal      <math> n = 0,025 </math>
 
*Bom relevo de canal      <math> n = 0,025 </math>
  
Na sequência é apresentado diferentes valores de <math> n</math> de acordo com a superfície.
+
O coeficiente de fricção <math> f </math> e o de rugosidade de Meanning <math> n </math> estão relacionados por:
  
 +
<math> f = \frac{2gn^{2}}{D^{1/3}} \qquad (30) </math>
 +
 +
Substituindo (30) em (29) obtemos:
 +
 +
<math> \frac{\tau_x}{\rho} = \frac{gn^{2}}{D^{7/3}} M(M^2 +N^2)^{1/2} \qquad (30) <\math>
  
 
=== Forma Conservativa ===
 
=== Forma Conservativa ===

Edição das 08h15min de 8 de outubro de 2021

Em construção Grupo: Gabriel Schmökel, Julia Remus e Pedro Inocêncio Rodrigues Terra


Introdução

Tsunami é um fenômeno da natureza caracterizado por uma sucessão de ondas marinhas, que devido ao seu grande volume e alta velocidade, podem se tornar catastróficas ao atingir a costa. Sismos, erupções vulcânicas, deslizamentos de terra, impactos e outros movimentos submarinos são a causa para a formação deste evento, sendo a grande maioria provocado pelos movimentos das placas tectônicas.


Formação de um Tsunami

Vamos analisar a sequência de passos da formação de uma Tsunami formada a partir de um abalo sísmico:

I. A convergência das placas tectônicas, devido as correntes de convecção, faz com que existam forças de tensão entre as placas.

IMAGEM

A tensão entre as placas eventualmente ultrapassa o limite máximo, o que provoca o deslizamento brusco de uma das placas sobre a outra, gerando um grande deslocamento de volume de água na vertical. Como a tsunami ocorre em grandes profundidades, ela pode passar despercebida para um barco que navega nas proximidades, uma vez que amplitude da onda é menor.

IMAGEM

II. A onda gerada se propaga ao longo de todas as direções do plano da água.

IMAGEM

III. A medida que a onda se aproxima da superfície ela diminui sua velocidade e aumenta sua amplitude

IMAGEM

Temos o interesse de descrever fisicamente a propagação da Tsunami de acordo com a topografia da água e do mar, por essa razão não iremos estudar o efeito físico que causou o deslocamento do volume de água.

Teoria

Derivação das EQs. de Águas Rasas

Para obter as equações de águas rasas devemos partir da equação da continuidade e das equações da quantidade de movimento de Navier-Stokes:


é a densidade; p é a pressão; é o vetor velocidade do fluído, onde u,v e w são as velocidades das partículas que compõe o fluído nas direções x,y,z; é o vetor aceleração da gravidade; é o tensor tensão, onde as componentes deste tensor são as tensões normais e tangenciais de cisalhamento, expressas por , no qual indica a direção e o plano normal.

Introduzindo as condições de contorno [1] para a superfície e para a profundidade do oceano :

, onde

, onde


é o deslocamento vertical da água sobre a superfície em repouso, é o vetor velocidade do fluído nas direções horizontais x e y.

A equação da continuidade em (3) pode ser simplificada, já que a densidade do fluído no oceano não varia significativamente com o tempo e a posição.

Integrando a expressão da continuidade em (6), utilizando a regra da integral de Leibniz [1], com os limites indo de até chegamos na seguinte expressão:

Teorema de Leibniz:

Substituindo as condições de contorno da profundidade (5) em (7) obtemos:

Substituindo a condição de contorno da superfície (4) em (9):

(10) é a primeira das equações das águas rasas que obtemos, onde é o comprimento da água total do fundo do oceano até a amplitude da onda. Podemos expressar (10) através do fluxo de descarga nas direções x e y, estás quantidades estão relacionadas com as velocidades da seguinte forma [1]:

Substituindo (11) e (12) em (10) chegamos na representação do fluxo de descarga para uma das equações de águas rasas.

Escrevendo as quantidades de movimento de Navier-Stokes nas componentes x,y e z:

Na componente z em (15) negligenciamos a aceleração das partículas, pois a aceleração da gravidade é muito maior. Também tomamos como nulos as componentes e em (14) e passamos a definir .

Resolvendo equação diferencial da componente z em (16) podemos obter a pressão, a qual é hidrostática.

Substituindo a pressão em (14):

Integrando a equação (18) em relação a componente z com os limites indo

Integrando a expressão (18), utilizando a regra da integral de Leibniz [1] e as condições de contorno (4) e (5), com os limites indo de até chegamos em outra das equações de águas rasas:

Generalizando a equação (18), para a componente y, obtemos a última das equações de águas rasas:

Na representação de fluxo de cargas as expressões (18) e (19) são apresentadas respectivamente como:

Iremos escrever as equações das águas rasas considerando o tensor de estresse . Os elementos deste tensor são responsáveis por causar nas partículas tensões tangenciais e perpendiculares, onde as tensões tangenciais são representadas por elementos onde , e as perpendiculares por elementos onde

Decompondo nas componentes x,y, e z de presente em (4):

Considerando o fluído Newtoniano, então as tensões de cisalhamento serão proporcionais a uma taxa de deformação, onde a constante de deformidade é a viscosidade.

Substituindo (25),(26) em (25), integrando em relação a componente z, utilizando a regra de Leibnz e as condições de contorno (3) e (4), obtemos:

Onde é a constante de viscosidade turbulenta, é uma força de resistividade relativa ao movimento do fluído com o fundo do oceano na direção x. Podemos negligenciar a constante de turbulência na situação em que não temos inclinações abrutas no fundo do mar. [1].

Considerando que o fluído é uniforme, então a expressão para é:

é o coeficiente de fricção, porém o coeficiente de rugosidade de Manning é mais usado, alguns valores deste coeficiente são:


  • Cimento puro e metal liso
  • Terra lisa
  • Pedras, ervas daninhas
  • Péssimo relevo de canal
  • Bom relevo de canal

O coeficiente de fricção e o de rugosidade de Meanning estão relacionados por:

Substituindo (30) em (29) obtemos:

Falhou ao verificar gramática (função desconhecida '\math'):

  • A aceleração na direção da velocidade na direção é zero
  • As componentes das velocidades em e em ( e ) não variam em


O sistema então pode ser descrito pelas seguintes equações:

Onde é a altura do fluido desde a base, são as velocidades médias na direções , é a constante gravitacional e é função que descreve a superfície onde acontece o movimento [1].

Desenvolvimento do cálculo

Forma conservativa 2D

Para descrever numericamente o fenômeno foi utilizado discretização por diferenças finitas e o método pra frente no tempo e no espaço (FTCS). As equações discretizadas podem ser observadas abaixo.


O cálculo foi desenvolvido na linguagem Python e será descrito a seguir.


No desenvolvimento do programa não foi conseguido alcançar os resultados esperados, pois o sistema não converge após um tempo.

Referências

  1. 1,0 1,1 1,2 1,3 1,4 https://docplayer.net/49487265-Lecture-8-the-shallow-water-equations.html