Mudanças entre as edições de "Equação de Águas Rasas"

De Física Computacional
Ir para: navegação, pesquisa
(Derivação das EQs. de Águas Rasas)
(Derivação das EQs. de Águas Rasas)
Linha 73: Linha 73:
 
<math>  \frac{\partial}{\partial x} \int_{-h}^{\eta} u dz + \frac{\partial}{\partial y} \int_{-h}^{\eta} v dz + \frac{\partial \eta}{\partial t} = \frac{\partial u (\eta + h)}{\partial x}+ \frac{\partial v (\eta + h)}{\partial y} + \frac{\partial \eta}{\partial t} = \frac{\partial uD}{\partial x}+ \frac{\partial vD}{\partial y} + \frac{\partial \eta}{\partial t} </math>
 
<math>  \frac{\partial}{\partial x} \int_{-h}^{\eta} u dz + \frac{\partial}{\partial y} \int_{-h}^{\eta} v dz + \frac{\partial \eta}{\partial t} = \frac{\partial u (\eta + h)}{\partial x}+ \frac{\partial v (\eta + h)}{\partial y} + \frac{\partial \eta}{\partial t} = \frac{\partial uD}{\partial x}+ \frac{\partial vD}{\partial y} + \frac{\partial \eta}{\partial t} </math>
  
<math> \Rightarrow \frac{\partial \eta}{\partial t} \frac{\partial uD}{\partial x}+ \frac{\partial vD}{\partial y} = 0 \qquad (10) </math>
+
<math> \Rightarrow \frac{\partial \eta}{\partial t} + \frac{\partial uD}{\partial x}+ \frac{\partial vD}{\partial y} = 0 \qquad (10) </math>
  
(10) é a primeira das equações das águas rasas que obtemos, onde <math> D </math> é o comprimento da água total do fundo do oceano até a amplitude da onda.
+
(10) é a primeira das equações das águas rasas que obtemos, onde <math> D </math> é o comprimento da água total do fundo do oceano até a amplitude da onda.  
 +
Podemos expressar (10) através do fluxo de descarga nas direções x e y, estás quantidades estão relacionadas com as velocidades da seguinte forma <ref name=Hopf>http://www.tsunami.civil.tohoku.ac.jp/hokusai3/J/projects/manual-ver-3.1.pdf</ref>:
  
 
=== Forma Conservativa ===
 
=== Forma Conservativa ===

Edição das 04h33min de 8 de outubro de 2021

Em construção Grupo: Gabriel Schmökel, Julia Remus e Pedro Inocêncio Rodrigues Terra


Introdução

Tsunami é um fenômeno da natureza caracterizado por uma sucessão de ondas marinhas, que devido ao seu grande volume e alta velocidade, podem se tornar catastróficas ao atingir a costa. Sismos, erupções vulcânicas, deslizamentos de terra, impactos e outros movimentos submarinos são a causa para a formação deste evento, sendo a grande maioria provocado pelos movimentos das placas tectônicas.


Formação de um Tsunami

Vamos analisar a sequência de passos da formação de uma Tsunami formada a partir de um abalo sísmico:

I. A convergência das placas tectônicas, devido as correntes de convecção, faz com que existam forças de tensão entre as placas.

IMAGEM

A tensão entre as placas eventualmente ultrapassa o limite máximo, o que provoca o deslizamento brusco de uma das placas sobre a outra, gerando um grande deslocamento de volume de água na vertical. Como a tsunami ocorre em grandes profundidades, ela pode passar despercebida para um barco que navega nas proximidades, uma vez que amplitude da onda é menor.

IMAGEM

II. A onda gerada se propaga ao longo de todas as direções do plano da água.

IMAGEM

III. A medida que a onda se aproxima da superfície ela diminui sua velocidade e aumenta sua amplitude

IMAGEM

Temos o interesse de descrever fisicamente a propagação da Tsunami de acordo com a topografia da água e do mar, por essa razão não iremos estudar o efeito físico que causou o deslocamento do volume de água.

Teoria

Derivação das EQs. de Águas Rasas

Para obter as equações de águas rasas devemos partir da equação da continuidade e das equações da quantidade de movimento de Navier-Stokes:


é a densidade; p é a pressão; é o vetor velocidade do fluído, onde u,v e w são as velocidades das partículas que compõe o fluído nas direções x,y,z; é o vetor aceleração da gravidade; é o tensor tensão, onde as componentes deste tensor são as tensões normais e tangenciais de cisalhamento, expressas por , no qual indica a direção e o plano normal.

Introduzindo as condições de contorno [1] para a superfície e para a profundidade do oceano :

, onde

, onde


é o deslocamento vertical da água sobre a superfície em repouso, é o vetor velocidade do fluído nas direções horizontais x e y.

A equação da continuidade em (3) pode ser simplificada, já que a densidade do fluído no oceano não varia significativamente com o tempo e a posição.

Integrando a expressão da continuidade em (6), utilizando a regra da integral de Leibniz [1], com os limites indo de até chegamos na seguinte expressão:

Teorema de Leibniz:

Substituindo as condições de contorno da profundidade (5) em (7) obtemos:

Substituindo a condição de contorno da superfície (4) em (9):

(10) é a primeira das equações das águas rasas que obtemos, onde é o comprimento da água total do fundo do oceano até a amplitude da onda. Podemos expressar (10) através do fluxo de descarga nas direções x e y, estás quantidades estão relacionadas com as velocidades da seguinte forma [1]:

Forma Conservativa

A partir das equações de conservação de momento e de massa, pode ser obtida as equações de águas rasas na forma conservativa. A forma conservativa da equação de águas rasas desconsidera a viscosidade do fluido e as tensões de cisalhamento aplicadas nele.

O desenvolvimento completo das equações está disponível na [1]. A conservação de massa é dada por:

Onde é a velocidade na direção , é a velocidade na direção e é a velocidade na direção .

Para a conservação do momento deve ser levado em conta três premissas:

  • O comprimento da onda é muito maior que as contribuições na direção
  • A aceleração na direção da velocidade é zero
  • O líquido é não viscoso
  • As velocidades e não variam em


Ao aproximar por diferenças finitas obtemos o sistema de equações discretizadas a seguir.

Resolvendo pelo método de FTCS (para frente no tempo) e ajustando aos limites de estabilidade, temos como resultado:

.... aqui gráfico ....


Para esse desenvolvimento encontramos algumas dificuldades para resolução do sistema de equações.

Referências

  1. 1,0 1,1 1,2 1,3 https://docplayer.net/49487265-Lecture-8-the-shallow-water-equations.html