Mudanças entre as edições de "Belousov-Zhabotinsky"

De Física Computacional
Ir para: navegação, pesquisa
Linha 57: Linha 57:
 
condições iniciais  
 
condições iniciais  
  
<math> u_{i,j}^{n} = 1 </math>  se 0 < 8(0.01i - 0.5) < (0.01j - 0.5)  senão  = 0  
+
<math> u_{i,j}^{0} = 1 </math>  se 0 < 8(0.01i - 0.5) < (0.01j - 0.5)  senão  = 0  
  
<math> v_{i,j}^{n} = 1 </math>  se 0 < -(0.01j - 0.5) < 8(0.01i - 0.5)  senão  = 0  
+
<math> v_{i,j}^{0} = 1 </math>  se 0 < -(0.01j - 0.5) < 8(0.01i - 0.5)  senão  = 0  
  
  

Edição das 03h20min de 30 de março de 2021

Belousov-Zhabotinsky Reaction

A reação de Belousov-Zhabotinsky (BZ) consiste em uma família de reações químicas oscilatórias descobertas inicialmente por Belousov, e posteriormente analisadas por Zhabotinsky. A reação consiste em 3BrO3 + 5CH2(CO2H)2 + 3H+ → 3BrCH(CO2H)2 + 4CO2 + 5H2O + 2CH2O2, e demonstra um comportamento oscilatório não linear até atingir o equilíbrio químico (adicionar imagem da reação). A interação entre a reação e a difusão dos produtos químicos no espaço resultará na auto-organização de ondas viajantes dinâmicas. Seu mecanismo original, foi descrito através de 27 espécies químicas e um total de 80 reações.

Oregonator

Oregonator é um modelo matemático utilizado para descrever de forma mais simples a dinâmica da reação BZ, desenvolvido por Field e Noyes (1974). Foi um modelo não espacial originalmente composto por três variáveis de estado, onde posteriormente, vemos que tornam-se apenas duas. O mecanismo é, inicialmente composto por cinco etapas irreversíveis, onde, A = 3BrO3 -, B = 5CH2(COOH)2; 2HCOOH, 3BrCH(COOH)2 (no geral, estas e demais espécies orgânicas); P = HOBr; X = HBrO2; Y = Br-; Z = forma oxidada do catalisador e f = Coeficiente estequiométrico.

A + Y X + P
X + Y 2 P
A + X 2 X + 2 Z
2 X A + P
B + Z Y

Aplicando, então, as equações de taxa, onde v é a taxa da reação e ki corresponde às constantes de taxa de reação:

v1 = k1 [A][Y] v2 = k2 [X][Y] v3 = k3 [A][X] v4 = k4 [X]2 v5 = k5 [B][Z]

Para construir o modelo Oregonator, é necessário supor que as concentrações de A e B permaneçam constantes (estão associadas às concentrações iniciais dos precursores). Posteriormente, deve-se aplicar as técnicas padrão de cinética química para obter o modelo dinâmico considerando X, Y e Z como variáveis dinâmicas, assumindo que as reações químicas são elementares, ou seja, os coeficientes estequiométricos coincidem com a potência das variáveis dinâmicas. Considerando como o tempo, vemos as seguintes equações de velocidade:

A análise é simplificada convertendo essas equações em uma forma adimensional:

A partir de operações algébricas com as equações acima, obtemos para x, y e z, o seguinte sistema de equações diferenciais não lineares:

Onde , e . Como parâmetro , é possível considerar a aproximação do estado estacionário da variável y, portanto, então as equações são reduzidos para:



teste

condições iniciais

se 0 < 8(0.01i - 0.5) < (0.01j - 0.5) senão = 0

se 0 < -(0.01j - 0.5) < 8(0.01i - 0.5) senão = 0