Mudanças entre as edições de "Algoritmo de Wang-Landau"

De Física Computacional
Ir para: navegação, pesquisa
Linha 1: Linha 1:
  
 
==Introdução==
 
==Introdução==
Ao contrário dos métodos convencionais de Monte Carlo, que geram diretamente uma distribuição canônica <math>g(E) e^{-E/k_B T}</math> a uma dada temperatura <math>T</math>, a abordagem de Wang-Landau estima a densidade de estados <math>g(E)</math> diretamente por meio de um passeio aleatório, que produz um histograma plano no espaço de energia <math>H(E)</math>.
+
Simulações computacionais, como o método de Monte Carlo, são vastamente utilizadas para estudar transições de fase e fenômenos críticos. O método padrão para simulações de Monte Carlo é o algoritmo de Metropolis, entretanto, algoritmos novos e mais eficientes são usados em simulações modernas, como o algoritmo de Wang-Landau. Ao contrário dos métodos convencionais de Monte Carlo, que geram diretamente uma distribuição canônica <math>g(E) e^{-E/k_B T}</math> a uma dada temperatura <math>T</math>, a abordagem de Wang-Landau estima a densidade de estados <math>g(E)</math> diretamente por meio de um passeio aleatório, que produz um histograma plano no espaço de energia <math>H(E)</math>. <REF WANG LANDAU>
 +
 
 +
 
  
 
==Amostragem de Wang-Landau==
 
==Amostragem de Wang-Landau==

Edição das 19h27min de 28 de novembro de 2021

Introdução

Simulações computacionais, como o método de Monte Carlo, são vastamente utilizadas para estudar transições de fase e fenômenos críticos. O método padrão para simulações de Monte Carlo é o algoritmo de Metropolis, entretanto, algoritmos novos e mais eficientes são usados em simulações modernas, como o algoritmo de Wang-Landau. Ao contrário dos métodos convencionais de Monte Carlo, que geram diretamente uma distribuição canônica a uma dada temperatura , a abordagem de Wang-Landau estima a densidade de estados diretamente por meio de um passeio aleatório, que produz um histograma plano no espaço de energia . Erro de citação: Marca <ref> inválida; nomes inválidos (por exemplo, muito extenso)