Método Lax-Wendroff de dois passos
Ir para navegação
Ir para pesquisar
Neste método é usando diferenças adiantadas no espaço e no tempo, tomando médias aritméticas na posição. Assim,
(22)
onde
(23)
Substituindo os valores de (23) em (22):
(24)
# Solução pelo método Lax-Wendroff dois passos para equação de advecção
def LaxW2Pad(L, tf, v, Nx, Nt):
"""
Parâmetros:
- L: comprimento
- tf: tempo final
- v: velocidade de propagação
- Nx: número de pontos na direção espacial
- Nt: número de pontos na direção temporal
Retorna:
- Matriz com a solução da equação da onda
"""
dx = L / (Nx - 1)
dt = tf / (Nt - 1)
r = v * dt / dx
u = np.zeros((Nt, Nx+1))
# Condição inicial: u(x,0) = f(x)
x = np.linspace(0, L, Nx+1)
u[0,:] = 1-np.cos(x) # Função que descreve a perturbação da onda
# Condições de contorno borda infinita:
xpos = np.zeros(Nx+1)
xneg = np.zeros(Nx+1)
for i in range(0,Nx+1):
xpos[i] = i+1
xneg[i] = i-1
xpos[Nx] = 0
xneg[0] = Nx
# Iteração no tempo
for n in range(0, Nt - 1):
for i in range(0, Nx+1):
u[n+1,i] = u[n,i] + (r/2) * (u[n, int(xpos[i])] - u[n,int(xneg[i])]) + (r/2)**2 * (u[n, int(xpos[i])] - 2*u[n,i] + u[n,int(xneg[i])])
return u
# Parâmetros
L = 2*np.pi
tf =1
v = 1 # -1. muda direção de propagação
Nx = 100
Nt = 500
solv6 = LaxW2Pad(L, tf, v, Nx, Nt)
listX = np.linspace(0, L, Nx+1)
listT = np.linspace(0, tf, Nt)
X, T = np.meshgrid(listX, listT)
plt.figure(figsize=(10, 6))
plt.pcolormesh(X, T, solv6, cmap='viridis', shading='auto')
plt.colorbar(label='Amplitude(u)')
plt.xlabel('Posição (x)')
plt.ylabel('Tempo (t)')
plt.title('Solução Lax - Wendroff (2P) da Equação da advecção (1D)', fontsize=16)
plt.show()
# Teste: Plota todas as curvas amplitude por posição de todos os tempos:
for tt in range(len(listT-1)):
amplitudes_tt = solv6[ tt,:]
plt.plot(listX, amplitudes_tt)
plt.title('Amplitude em Função da Posição')
plt.xlabel('Posição (x)')
plt.ylabel('Amplitude (u)')
plt.legend()
plt.grid(True)
plt.show()