O objetivo deste trabalho é aplicar o Shooting method (método do chute) para encontrar as primeiras funções de onda espaciais da Equação de Schrödinger para o caso do poço de potencial infinito. Após, será realizada a evolução temporal através do Método de Crank-Nicolson.
Método de Crank-Nicolson
Seja a equação diferencial
,
onde é um operador diferencial linear em r.
Em forma discretizada no tempo, pode-se escrever
.
Por simetria, pode-se escrever a equação acima utilizando um f à direita:
A equação acima é dita "explícita" pois, para o cálculo de , só é utilizado o valor já explicitamente calculado . Já a equação anterior é chamada implícita pois está presente explicitamente. Em termos numéricos, um método peca pelo excesso enquanto o outro o faz pela falta, de modo que um resultado mais satisfatório pode ser obtido ao tomar-se a média dos dois:
Após alguma álgebra:
.
Chamando e , onde I indica a matriz identidade, pode-se reescrever a equação acima na seguinte maneira:
.
Trata-se do método de Crank-Nicolson, mais estável e preciso do que os métodos implícito e explícito. Caso o problema apresentar condições de contorno, estas serão devidamente implementadas nos elementos das matrizes M e E.
Equação de Schrödinger
Seja a equação de Schrödinger unidimensional
.
Efetuando a discretização das variáveis através do Método de Crank-Nicolson, obtém-se:
Substituindo as discretizações na eq. de Schrödinger:
Supondo e separando as partes explícita e implícita, obtém-se, após alguma álgebra:
Definindo
e
obtém-se:
A equação acima pode ser escrita em forma matricial, de modo que:
onde
e
Para avaliar a evolução temporal do sistema, é necessário encontrar . Utilizando resultados anteriores, pode-se obter através da seguinte relação:
Poço de potencial infinito
Para o presente caso a ideia é obter a evolução temporal do sistema, impondo condições de contorno iguais a zero, de modo que os operadores e ficam:
e
A ideia é que o primeiro e o último termo do tanto do vetor quanto do vetor seja constante, o que satisfaz as condições de contorno do presente caso. Também é interessante notar que os índices são todos constantes, visto que no presente caso o potencial dentro do poço é nulo.
Implementando o algoritmo descrito acima, obteve-se:
Evolução temporal para o caso n=1. Nesta animação e nas subsequentes, foram sobrepostas as partes real e imaginária da equação de Schrödinger: a linha azul diz respeito à parte real enquanto a amarela, à imaginária.
Na figura acima, tem-se a evolução do caso n=2.
Por último, o caso n=3.