Cahn1dcompare
Ir para navegação
Ir para pesquisar
import numpy as np
import matplotlib.pyplot as plt
from scipy.fft import rfft, irfft, rfftfreq
import os
def cahnexp1d(cc, c1, c2):
cc1 = np.copy(cc)*c1
cc2 = np.copy(cc)*c2
cc3 = np.copy(cc**3)*c1
for i in range(l):
n = i - 2
cc[n] = ( 2*(cc1[n] - cc3[n]) + (cc3[n-1] + cc3[n+1] -1*(cc1[n-1] + cc1[n+1]))
-1*(cc2[n-2] + cc2[n+2] + 6*cc2[n])
+(4*cc2[n-1] + 4*cc2[n+1])
) + cc[n]
return cc
def cahnfourier1d(cc, k2, k4):
cct = rfft(cc)
cct3 = rfft(cc**3 - cc)
cct = cct + difd*dt*(-k2*(cct3) - k4*cct)
cc = irfft(cct)
return cc
#SEMENTE UTILIZADA NA FIGURA DA PÁGINA: 4
np.random.seed(4)
xmin = 0
xmax = 1
tmin = 0
tmax = 1
dt = 1/22000000
dx = 1/128
difd = 1
gamma = (3.4/128)**2
l = int((xmax/dx))
k = rfftfreq(l, dx/(2*np.pi))
c1 = difd*dt/(dx**2)
c2 = gamma*c1/(dx**2)
k2 = k**2
k4 = (k2**2)*gamma
ccexp = np.random.rand(l)*2 - 1
ccfourier = np.copy(ccexp)
xx = np.linspace(0, xmax, l)
t = 0
u = 0
tamanho = l/2
plt.figure(figsize=(8, 8))
os.makedirs(f".\\1d", exist_ok = True)
while (t < tmax):
plt.cla()
plt.title(f"Tempo: {t:.7f}, maior erro: {np.amax(abs(ccexp-ccfourier)):.7f}")
plt.axhline(0, c = "red", alpha = 0.5)
plt.ylim(-1.1, 1.1)
plt.xlim(xmin, xmax)
plt.scatter(xx, ccexp, c = "orange", alpha = 0.6, label = "FTCS")
plt.plot(xx, ccexp, c = "orange", alpha = 0.4)
plt.scatter(xx, ccfourier, c = "blue", alpha = 0.4, label = "FFT")
plt.plot(xx, ccfourier, c = "blue", alpha = 0.6)
plt.scatter(xx, abs(ccexp-ccfourier), c = "red", alpha = 0.4, label = "Erro")
plt.legend(loc = 1)
if u%100 == 0:
plt.savefig(f".\\1d\\{t:.6f}.png", dpi = tamanho)
if u ==10000:
break
ccfourier = cahnfourier1d(ccfourier, k2, k4)
ccexp = cahnexp1d(ccexp, c1, c2)
t = round(t + dt, int(-np.log10(dt) + 1))
u+=1