Previsão de Mercado de Ações com Movimento Browniano Geométrico
Grupo: Eric Naiber, Vitória Xavier
Resumo
Introdução
Movimento browniano e Movimento Browniano Geométrico
Em 1828, o biólogo Robert Brown observou comportamento irregular e ininterrupto de corpúsculos biológicos e partículas inorgânicas suspensas em água, o que posteriormente foi nomeado de Movimento Browniano [1]. Acreditava-se que esse movimento aleatório tratava-se de uma nova forma de vida. Quase 80 anos se passaram com diferentes pesquisadores tentando desvendar a natureza do movimento browniano até que Einstein, em 1905, obteve a expressão matemática que caracterizou esse comportamento. Não tratava-se de um fenômeno biológico, mas sim físico. Mostrou que o movimento das partículas suspensas em água se dá pelo choque com outras partículas, gerando movimento não contínuo (?)[2]. Sua solução representou grandes avanços para física e química, e dentre elas lançou as bases de uma das teorias mais bem sucedidas para a modelagem de sistemas naturais.
Einstein, em 1905 [3], com relação ao primeiro experimento em que o movimento browniano foi observado, demonstrou que o número de partículas suspensas em um ponto do espaço com relação a um instante temporal assumia uma distribuição gaussiana. Além disso, o MB é um processo markoviano, dado que seu estado futuro depende apenas do presente, e não de eventos passados [4][5]. Portanto, o movimento Browniano é tido como um modelo referencial para processos estocásticos e usado para entender diferentes sistemas em não equilíbrio (?). Esse modelo pode ser aplicado no estudo de comportamento de diversos sistemas dotados de movimentos aleatórios cuja distribuição de probabilidades seja gaussiana.
O movimento browniano geométrico é a distribuição logarítmica do movimento browniano, gerando apenas valores positivos e provocando um deslocamento na curva gaussiana pelo qual o MB é caracterizado. Sua dedução pode ser encontrada em [6]. Ele é definido pela equação diferencial estocástica abaixo:
- Falhou ao verificar gramática (erro de sintaxe): {\displaystyle dS_t=\mu \:S_{_t}\:dt\:+\:\sigma \:S_t\:dW_t}
Onde $$S(t)$$ é processo estocástico, $W_{t}$ um processo de Wiener, mu ("percentage drift" ou "percentagem de deriva") e ("percentage volatility" ou "percentagem de volatilidade") são constantes. O primeiro é utilizado para modelar tendências determinísticas, enquanto o último termo é muitas vezes usado para modelar um conjunto de eventos imprevisíveis que ocorrem durante este movimento. [wikipedia]
- Falhou ao verificar gramática (erro de sintaxe): {\displaystyle S\left(t\right)=S\left(o\right)e^{\left(\mu -\frac{\sigma ^2}{2}\right)t+\sigma \:Wt}}
Aplicação: Mercado Financeiro
Simulações
Discussão
- ↑ R. Brown, Phil. Mag. 4, 161 (1828).
- ↑ A. Einstein, Ann. d. Phys. 17, 549 (1905).
- ↑ A. Einstein, Ann. d. Phys. 17, 549 (1905).
- ↑ Wilmott, P., 2000. Quantitative Finance. John Wiley & Son, Ltd, Chichester
- ↑ A Review on Geometric Brownian Motion in Forecasting the Share Prices in Bursa Malaysi
- ↑ Bess, Denis Fernandes Alves. Generalizações do Movimento Browniano e suas Aplicações à Física e Finanças. 2005. Dissertação de mestrado. Universidade Estadual Paulista. Página 122.