Termostato de Nosé-Hoover

De Física Computacional
Revisão de 20h28min de 25 de maio de 2021 por Rafabel (discussão | contribs)
Ir para navegação Ir para pesquisar

Grupo: Gabriel Azevedo, Rafael Abel e Thierre F. Conceição.

Termostato de Nosé-Hoover

O termostato de Nosé-Hoover é um algoritmo utilizado para simulação de dinâmica molecular. Esse ensemble é relevante quando o sistema em estudo está em contato com um banho térmico, para manter a temperatura constante[1]. A maneira que o algoritmo de Nosé-Hoover mantém a temperatura constante é a partir da adição de uma variável dinâmica fictícia (um "agente" externo), que atua sobre as velocidades das partículas no sistema, as acelerando ou desacelerando até que estas atinjam a temperatura desejada.

ADICIONAR O RESTO DAS INFORMAÇÕES E TAMBÉM INFOS SOBRE LJ

Método

Termostato de Nose

Para entender o termostado de Nóse-Hoover, primeiramente será mostrado o termostato de Nosé[2].

Este termostato atribui coordenadas generalizados adicionais Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle s } e o seu momento conjugado Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle p_s } ao banho térmico. O fator Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle s } é definido como um fator de escala das velocidades, onde:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dot \bold v = s\dot \bold r = s\bold p/m}

E também são definidas as energia potenciais e cinética associadas a Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle s } como:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal U_s = (N_f + 1)k_BTln(s) } e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal K_s = \frac{1}{2}Q\dot s^2 = \frac{p_s^2}{2Q} }

onde Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q } é entendido como a "inércia térmica", ele determina a escala do tempo da flutuação de temperatura.

O Lagrangiano do sistema extendida (consistente das partículas e do banho térmico) então é postulado como:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal L = \mathcal K + \mathcal K_s - \mathcal U - \mathcal U_s = \sum_i \frac{\bold p_i^2}{2m_is^2} + \frac{p_s^2}{2Q} - \mathcal U(\bold r) - (N_f + 1)k_BTln(s)}

Como não é explicitamente dependente do tempo:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal H_N = \mathcal K + \mathcal K_s + \mathcal U + \mathcal U_s = \sum_i \frac{\bold p_i^2}{2m_is^2} + \frac{p_s^2}{2Q} + \mathcal U(\bold r) + (N_f + 1)k_BTln(s)}

Como Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal H_N } se conserva, esse sistema é numericamente estável [3]

Assim, as equações de movimento podem ser deduzidas:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bold \dot r_i = \frac{\partial \mathcal H_N}{\partial \bold p_i} = \bold p_i/(m_is^2)}

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bold \dot p = -\frac{\partial \mathcal H_N}{\partial \bold r_i} = \bold f_i} onde Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle f } é o número de graus de liberdade do sistema;

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dot s = \frac{\partial \mathcal H_N}{\partial p_s} = p_s/Q}

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dot p_s = -\frac{\partial \mathcal H_N}{\partial s} = \sum_i \frac{\bold p_i^2}{m_is^3} - (N_f + 1)k_BT/s }

Assim, o termostato de Nose pode ser tratado como um sistema de partículas junto a um banho térmico como um ensemble NVE. Entretanto, neste sistema, Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q } precisa ser determinado por tentativa e erro. Caso o valor escolhido seja muito pequeno, o sistema possuirá muitas oscilações, logo é necessário aumentar o valor de Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q } , porém caso o valor escolhido seja muito alto, o tempo para atingir equilíbrio térmico será demasiadamente longo. Outro problema do termostato de Nose é o fato de que, por as velocidades serem escaladas com o Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle s } , o tempo também será escalado com Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle s } , o que não acontece em sistemas reais e extendidos. [3]

Termostato de Nosé-Hoover

Para contornar esses problemas, Hoover utilizou uma parametrização diferente, sem o termo Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle s. } [4]. O parâmetro Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle s } pode ser removido das equações reescrevendo-as utilizando Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bold r } , Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bold \dot r } e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bold \ddot r } . Assim, as equações de movimento do termostato de Nosé-Hoover são:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bold \dot r = \dot p_i/m_i}

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bold \dot p = \bold f_i - \xi \bold p_i = \bold f_i \frac{p_\eta}{Q}\bold p_i }

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dot \eta = \left(\sum_ip_i^2/m_i - L/\beta\right)/Q }

onde Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \eta } agora é o termo relacionado a fricção do banho térmico.

Cadeias de Nose-Hoover

O termostato de Nosé-Hoover gera distribuição canônica quando não existem forças externas ao sistema. Enquanto existem sistemas com forças externas que podem apresentar este comportamento, existem casos com forças externas onde esse termostato não gera o comportamento esperado. Para contornar esse problema, Martyna et al. [5] propuseram uma solução onde um termostato de Nosé-Hoover está acoplado a outro termostato de Nosé-Hover, formando uma cadeia. Este sistema ainda irá gerar uma distribuição canônica e não apresentará problemas com forças externas. As equações de movimento para um sistema com M termostatos são:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bold \dot r_i = \frac{\bold p_i}{m_i} }

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bold f_i - \frac{p_{\xi 1}}{Q_1}\bold p_i }

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dot \xi_k = \frac{p_{\xi,k}}{q_k} \quad k=1,...,M }

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dot p_{\xi, 1} = \left(\sum_i\frac{p_i^2}{m_i} - Lk_BT\right) - \frac{p_{\xi,2}}{q_2}p_{\xi,1} }

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dot p_{\xi, k} = \left[\frac{p_{\xi_{k-1}}^2}{Q_{k-1}} - k_BT\right] - \frac{p_{\xi_{k+1}}}{Q_{k+1}} }

. . .

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dot p_{\xi, M} = \left[\frac{p_{\xi_{M-1}}^2}{Q_{k-1}} - k_BT\right] }

Resultados

Programas Utilizados

/*Simulação de DM de um fluido de Lennard-Jones com termostato Nose-Hoover Compile usando "gcc -o NVT_NH NVT_NH.c -lm -lgsl" */
/*********************************************/  
#include <stdio.h>
#include <stdlib.h>
  
return 0;  
}

Referências

  1. https://www2.ph.ed.ac.uk/~dmarendu/MVP/MVP03.pdf
  2. NOSÉ, Shuichi, A molecular dynamics method for simulations in the canonical ensemble, Molecular Physics, 1984, Vol. 52, No. 2, 255-268
  3. 3,0 3,1 http://www.courses.physics.helsinki.fi/fys/moldyn/lectures/L5.pdf
  4. William G. Hoover, Canonical Dynamics: Equilibrium phase-space distributions, Physical Review A, 1985, Vol. 31, No. 3.
  5. MARTYNA, G. J., KLEIN, M. L., TUCKERMAN, M. Nose-Hoover chains: The canonical ensemble via continuous dynamics J. Chem. Phys. 1992, Vol. 97 No. 4.