Problema de Fermi-Pasta-Ulam
Grupo: Augusto M Giani e Henrique Padovani
O objetivo deste trabalho é replicar os resultados do problema proposto por Fermi-Pasta-Ulam em 1953 [1] sobre sistemas dinâmicos não lineares. As análises serão sobre a solução dos modos de vibração comparados à solução analítica para poucas massas e também sobre a energia do sistema para os modos de oscilação, enquanto o sistema evolui no tempo.
O Problema
O Problema proposto constitui-se de simulações em uma rede de partículas ligadas entre si através de molas que obedecem a Lei de Hooke com uma correção não-linear quadrática ou cúbica [2]
A lei de forças que rege o comportamento deste sistema é:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle F = -k \Delta x - \alpha k \Delta x^2 - \beta k \Delta x^3 } .
Onde Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta x } e a deformação a cada 2 massas acopladas (Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_{i+1} - x_i } ), Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle k } é a constante elástica da mola, Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha } é um parâmetro de deformação arbitrário que controla a correção não linear quadrática e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \beta } é o parâmetro que controla a correção cúbica. Importante ressaltar que se Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha } é possuir assumir um valor não nulo, real, é igual a zero no nosso sistema, ou vice-versa. Não estamos analisando correções quadráticas somadas com correções cúbicas neste trabalho.
Motivação: O que era esperado e o paradoxo XXX
Escrever a motivação ...
Discretização
A discretização deste problema gira em torno de abrir a equação das forças, e com o termo de aceleração, iterar o movimento das partículas a partir disso [3]. Partimos do problema com correção quadrática, ou seja, Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \beta = 0 } . Partindo de:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle F = -k \Delta x - \alpha k \Delta x^2 } ,
subtituímos pelas variáveis discretas:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle m \ddot{x_j} = -k \left( (x_{j+1} - x_j) - (x_j - x_{j-1}) \right) - \alpha k \left( (x_{j+1} - x_j) - (x_j - x_{j-1}) \right) } ,
Chegamos em:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle m \ddot{x_j} = k \left( x_{j+1} - 2x_{j} + x_{j-1} \right) \left[ 1 + \alpha \left( x_{j+1} - x_{j-1} \right) \right] }
Em que Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ddot{x_j} } é a aceleração da j-ésima partícula, com ela conseguimos integrar o movimento das partículas.
Implementação
Usamos XX partículas, com modo de oscilação YY
Resultados
SUBTITULOS
negrito, Simultaneous OverRelaxation
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{cases} \Phi(x = 0,y) = \Phi_{0} = 1 \\ \Phi(x = L,y) = \Phi(x,y = 0) = \Phi(x,y = L) = 0\\ \end{cases} }
### Exemplo da evolução temporal no método de relaxação ###
### Exemplo para o algoritmo de jacobi, Equação de Laplace ###
# P é a matriz do potencial no tempo n
# Q é a matriz do potencial no tempo n+1
while t < tmax: # Loop temporal
for i in range(1,L+1): # Loop em x
for j in range(1,L+1): # Loop em y
Q[i][j] = (P[i+1][j] + P[i-1][j] + P[i][j+1] + P[i][j-1])/4
P = Q.copy()
t = t + td
plt.plot(x,y,P) # plotagem dos gráficos
Link para Códigos
Fizemos no ambiente Colab em .ipynb, segue link do github:[1]
Referências
- ↑ ANDRADE, D. X.; ANJOS, P. H. R.; ASSIS, P. E. G.. Sobre a conexão entre alguns modelos físicos não-lineares. Rev. Bras. Ensino Fís., São Paulo , v. 39, n. 1, e1307, 2017 . Disponível em <http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172017000100407&lng=pt&nrm=iso>. http://dx.doi.org/10.1590/1806-9126-rbef-2016-0083.
- ↑ http://www.physics.utah.edu/~detar/phys6720/handouts/fpu/FermiCollectedPapers1965.pdf - Fermi, Pasta, Ulam, Studies of non linear problems
- ↑ https://en.wikipedia.org/wiki/Fermi%E2%80%93Pasta%E2%80%93Ulam%E2%80%93Tsingou_problem