Modelo de Bornholdt para simulação de mercados financeiros artificiais
Grupo: Leonardo Barcelos, Luana Bianchi e Rubens Borrasca
Modelo de Bornholdt
Alguns conceitos importantes
Retornos
Quando se trata de sistemas financeiros, os estudos se concentram mais no retorno dos ativos do que no preço em si, pois a série temporal dos retornos tem propriedades estatísticas mais interessantes que a série dos preços.
Sendo P(t) o preço de um ativo financeiro no instante t, e P(t-1) o preço do ativo no instante (t-1), o retorno linear do ativo é:
Reescrevendo esta equação, obtemos que:
Aplicando a função logarítmica em ambos os lados da equação, e considerando que:
obtêm-se o retorno logarítmico, que é mais indicado quando se têm ativos voláteis, que possuem uma variação muito alta:
Considerando que neste estudo serão comparados retornos de diferentes índices, e também os retornos obtidos através das simulações com o modelo de Bornholdt, é importante normalizar os retornos:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bar{r}_n = \frac{r_n - \langle r \rangle}{\sigma_r}}
em que Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma_r} é o desvio padrão da serie de retornos e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle r \rangle} a média.
Distribuição dos Retornos
Quando se tem um volume considerável de dados é possível obter a distribuição probabilística deles. Para isso pode-se utilizar a estimação de densidade de Kernel (KDE). Ao observar uma pequena janela de tamanho h em torno de um ponto em análise, pode-se dizer que:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle $P(x-h \leq x \leq x+h ) \approx \frac{1}{N}\sum_n^N W(u) }
sendo Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle W(u)} uma função kernel e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} uma variável tal que:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle u = \frac{x - x_n}{2h}}
Para este estudo utilizou-se um kernel gaussiano:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle W(u) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}u^2}}
Este método foi aplicado para as séries de retorno para obter a distribuição deles, utilizando Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle h = 0.5 \sigma} .
Volatilidade
Uma forma de calcular a volatilidade da série temporal de retornos ao longo do tempo é elevar ao quadrado os valores da série.
O interessante a se verificar é se a volatilidade tem memória, e para isso é preciso verificar se a auto correlação delas apresenta a formação de clusters de volatilidade. Para obter a auto correlação o teorema de Wiener-Khinchin foi utilizado, de forma que:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle A(\tau) =\mathcal{F}\{|S(\omega)|^2\}}
onde Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle S(\omega)} é a transformada de Fourier do quadrado dos retornos.
Simulações
Variação do tamanho da grade
Em Julia, 8000 passos de MC 16x16: 0.512 s 32x32: 2.332 s 50x50: 10.674 s 100x100: 154.134 s
