Modelo de Potts 2D
Modelo de Potts
O "modelo de Potts de Q-estados" trata de um sistema de rede com N spins interagentes , onde um spin pode assumir valores discretos . Cada spin do sistema está limitado a interagir com outros spins em sua vizinhança e a energia da interação entre dois spins e é dada pelo potencial
onde é a função delta de Kronecker e é a constante de interação entre os spins. Dessa maneira, a interação entre dois spins vizinhos contabiliza um valor de energia ao sistema apenas se . A hamiltoniana do sistema é dada pela soma entre todas as interações entre spins vizinhos:
Este modelo é tido como uma generalização natural do Modelo de Ising e para o caso ambos modelos são equivalentes a menos de uma constante:
Nesse caso, a interação entre dois spins e assume a mesma dinâmica do modelo de Ising a contribuição para a energia do sistema será
Neste trabalho, o modelo de Potts foi estudado em uma rede quadrada 2D com vizinhança de von Neumann para primeiros vizinhos e condições de contorno periódicas. A quantidade de spins no modelo é com interações ferromagnéticas com , favorecendo vizinhanças de spins que compartilham o mesmo valor de para minimizar a energia do sistema.
Método de Monte Carlo
O método de Monte Carlo é aplicado ao modelo de Potts com o objetivo de gerar estados de equilíbrio para medir os observáveis do sistema. Neste sistema se escolhe aleatoriamente spins do sistema e se gera um novo valor de Falhou ao verificar gramática (função desconhecida '\inQ'): {\displaystyle q\inQ | q \neq s_i<math === Algorítmo de Metrópolis === O primeiro algoritmo utilizado para gerar as configurações do sistema foi o algoritmo de Metropolis. O algoritmo escolhe repetidamente um novo estado para o sistema <math>\nu} e aceitando ou rejeitando ele de acordo com uma probabilidade de aceitação de transitar de um estado antigo para o novo estado . O algoritmo que iremos descrever utiliza a dinâmica de inversão única de spins.
Temos que a condição de balanceamento detalhado é dada por [1]:
onde é a diferença de energia entre o novo e o antigo estado.
Vamos supor que tenhamos os estados e e que temos a relação de energias: . Então, a maior das duas chances de aceitação é , portanto iremos igualar essa probabilidade a 1. Para que seja respeitada, iremos definir o valor de como . Temos, assim, o algoritmo de Metropolis:
Dessa forma, sempre que tivermos um estado cuja energia seja menor do que a do estado atual, iremos aceitar a transição, mas se a energia for maior, teremos uma pequena probabilidade de trocarmos de estado.
Algoritmo de Banho Térmico
O algoritmo de Metropolis para inversão única de spins é eficaz para o modelo de Potts em baixos valores de ou temperaturas acima da temperatura crítica, entretanto para valores altos de ou baixas temperaturas o algoritmo falha em gerar estados com maiores probabilidades de transição, que são estados onde o novo valor de um spin é igual ao spin de outros spins interagentes. Considerando um caso onde e um spin que possui 4 vizinhos, se todos os vizinhos do spin possuem valores diferentes uns do outro e do próprio spin, poderá levar em média passos de Monte Carlo para sortear um spin com maior probabilidade de aceitação de transição, e dessa forma o algoritmo irá demorar mais tempo para alcançar a configuração de equilíbrio do sistema. Para contornar este problema podemos utilizar o algoritmo de banho térmico.
- ↑ M. E. J. Newman, G. T. Barkema, "Monte Carlo Methods in Statistical Physics". Oxford University Press Inc., New York, 1999.