Equações de Laplace e Poisson

De Física Computacional
Revisão de 17h41min de 28 de março de 2021 por Augustog (discussão | contribs)
Ir para navegação Ir para pesquisar

Grupo: Augusto M Giani e Henrique Padovani

O objetivo deste trabalho é implementar os métodos de Relaxação, Gauss-Seidel e SOR (Simultanoeus OverRelaxation) em problemas de eletroestática, resolvidos pelas equações de Laplace e Poisson. Também temos como objetivo comparar seus resultados: erro entre os métodos e a solução analítica, tempo para estabilização das soluções.


Equações de Laplace e Poisson

A Equação de Laplace descreve o Potencial Elétrico () de uma determinada região num espaço que não possui nenhuma densidade de carga elétrica (corpo carregado):

ou na sua versão em 2 dimensões: Falhou ao verificar gramática (função desconhecida '\partialx'): {\displaystyle \frac{\partial^2\Phi}{\partialx^2} + \frac{\partial^2\Phi}{\partialy^2} = 0}