Modelo de Turing

De Física Computacional
Revisão de 14h17min de 22 de novembro de 2020 por Pedhmendes (discussão | contribs)
Ir para navegação Ir para pesquisar

EM CONSTRUÇÃO

Equação de Turing

Simulações computacionais que envolvem equações diferenciais parciais (EDP's) são usualmente modeladas através da discretização das variáveis espaciais e temporais. Algumas dessas equações descrevem comportamentos difusivos no sistema, sendo chamadas de equações de difusão. Tais equações envolvem variáveis de estado que apresentam variações temporal e espacial e coeficientes de difusão no sistema, além de outros parâmetros que influenciam na evolução dos estados. Dentro desse ramo de equações, encontra-se o Modelo de Turing, desenvolvido por Alan Turing, que utiliza como base a concentração de espécies em um sistema, avaliando sua reação, difusão e variação espacial e temporal. São muitas as aplicações do modelo, principalmente em ramos como biologia e química, envolvendo problemas com formação de padrões[1]. A seguir, descrevemos sua formulação matemática.

Sejam e as concentrações das espécies que serão analisadas. Sejam e parâmetros e e constantes. Os coeficientes de difusão são e , cada um associado a uma das concentrações[2]. O Modelo de Turing é dado pelas EDP's



Note que certa parte de cada equação depende apenas dos parâmetros e das concentrações. Podemos, portanto, utilizar funções de variáveis e para descrever o sistema[3], de modo que


Estabilidade e Instabilidade no Modelo de Turing

Pontos de Equilíbrio

Vimos que o modelo de Turing depende de parâmetros , de constantes e e dos coeficientes de difusão.

Afirmação: Se , temos ( como o único ponto de equilíbrio.

Demonstração: Mostraremos que é ponto de equilíbrio. De fato, ao aplicarmos esse ponto na equação do modelo de Turing, temos



para mostrar que é único, suponha que existem dois pontos de equilíbrio, a saber, e . Vemos que, como as equações diferenciais em cada ponto fixo são iguais a zero, temos




Consequentemente, devemos ter


.


Do mesmo modo, . Portanto, o ponto de equilíbrio é único nessas circunstâncias.

Estabilidade de Sistemas Reativos-Difusivos

Para estudarmos a estabilidade dos sistemas reativos-difusivos precisamos encontrar os autovalores da matriz[2]



Onde é a matriz jacobiana dos termos de reação, é a matriz diagonal dos termos de difusão e é o parâmetro que determina a frequência espacial das perturbações.

Implementação

Para resolver numericamente as equações de Turing iremos utilizar o método FTCS (Forward Time Central Space). O método FTCS é o mais simples e consiste em discretizar a derivada em de forma não simetrizada. Obtemos as seguintes discretizações para uma função genérica




Onde é o vetor posição, que neste trabalho utilizamos apenas duas dimensões, .

Podemos discretizar as equações de Turing diretamente com o método FTCS. Talvez o único problema seja o laplaciano, porém basta escrever da forma



Assim podemos utilizar a discretização simetrizada e obter



Ao tomarmos , que faremos aqui, podemos simplificar a discretização do laplaciano para


Então obtemos que as equações de Turing discretizadas pelo método FTCS, em notação discreta, são dadas por



Onde e são os índices espaciais e é o índice temporal.

Utilizamos uma rede quadrada de tamanho com condições de contorno periódicas. O sistema inicia próximo do equilibrio e então é aplicado um pequeno ruído para começar a difusão. O ruído é muito importante, sem ele o sistema ficaria sempre no equilíbrio. O ruído também deve ser pequeno suficiente para quebrar o estado inicial, mas não grande suficiente para causar instabilidades numéricas na simulação. O ruído utilizado aqui consiste em números aleatórios no intervalo . Tomamos .

Resultados

Programas Utilizados

Referências

  1. https://en.wikipedia.org/wiki/Turing_pattern
  2. 2,0 2,1 H. Sayama, "Introduction to the Modeling and Analysis of Complex Systems", p. 260. Open SUNY Textbooks, Geneseo, NY, 2015. Erro de citação: Etiqueta inválida <ref>; Nome "Sayama260" definido várias vezes com conteúdo diferente
  3. J. Jost, "Partial Differential Equations", 3ed, p.140. Springer Science+Business Media, New York, 2013.