Integração Numérica
Integração numérica é um termo amplo que abrange até a integração de equações diferenciais como é discutido em Métodos Computacionais B. Aqui nos referimos exclusivamente ao cálculo numérico da integral definida:
O termo definida, quer dizer que a integral se faz entre limites definidos, no caso a e b.
O interesse de fazer esse cálculo numericamente se deve a:
- existência de funções contínuas sem primitiva, o que inviabiliza a conta analítica.
- funções discontinuas ou definidas por trechos mas para as quais a integral não existe (no fundo é a falta de uma primitiva)
- funções (ou tabelas) provenientes de experimentos
- funções continuas e com primitiva de representação simbólica, porem de difícil avaliação na prática (mais difícil que avaliar a própria função)
Definição
Revisemos o conceito de integral do cálculo: A integral definida de uma função f(x) no intervalo [a, b] se define como:
A integral de f(x) pode ser entendida como a soma de pequenos retângulos de base dx e altura f(x), onde o produto f(x) dx é a área deste retângulo.
A soma de todas estas pequenas áreas, ou áreas infinitesimais, fornece a área total abaixo da curva.
Mais precisamente podemos dizer que a integral acima é o valor limite da soma:
onde:
é o comprimento dos pequenos intervalos nos quais dividimos o intervalo (b-a),
é o valor da função em algum ponto deste intervalo.
Quando o valor da soma acima é igual a área abaixo da curva.
A integral também é conhecida como antiderivada:
Relembremos porque:
Teorema Fundamental do Cálculo
Se resolvermos a integral acima entre os limites a e b, o resultado pode ser escrito como dependendo só dos extremos:
Vamos ver agora como se isso for válido, então F(x) é a primitiva procurada.
Calculando a integral entre e :
Pela definição da integral entre limites definidos podemos escrever-la como:
onde é um valor de entre os extremos do intervalo.
Passando o para a direita e tomando o limite quando ele vai para zero:
Demonstramos que a derivada de F(x) resulta ser a função f(x) que queremos integrar. Em outras palavras, o Teorema fundamental do Cálculo diz que resolver uma integral se resume a achar a primitiva, ou seja uma função cuja derivada seja o integrando.
O problema prático é que não todas as funções tem primitiva.. Vejamos então.
Cálculo Numérico
O cálculo numérico de uma integral definida se baseia na própria definição acima:
onde:
Com a diferença que N é finito. Obviamente quanto maior, melhor, mas será sempre finito.
Dependendo de onde são avaliados os termos diferentes versões da integral numérica.
Exemplo:
- , com i=0,...N-1 é a integral pela borda inferior do intervalo
Programação
... Read*, a, b, N dx = (b-a)/N; S=0 Do i = 0, N-1 x = a + i*dx S = S + f(x) EndDo Print*, "Integral S=", S*dx ...