Grupo - Modelo de Potts

De Física Computacional
Revisão de 22h18min de 24 de janeiro de 2018 por Eliseuvf (discussão | contribs)
Ir para navegação Ir para pesquisar

Originalmente descrito por Renfrey Potts em 1951 na sua tese de doutorado, esse modelo é uma generalização do modelo de Ising para a interação entre spins em uma rede cristalina.

Descrição do modelo

No modelo de Potts à estados são considerados spins dispostos em uma rede, geralmente bidimesnsional retangular, cada spin podendo estar em um de estados possíveis.

O Hamiltoniano desse sistema é


onde é a constante de acoplamento que determina a intensidade da interação, é a função delta de Kronecker que retorna se e retorna para todos os outros casos, e o somatório considera somente os pares de spins vizinhos.

No caso ferromagnético o nível fundamental de energia possui uma degenerescência igual à correspondendo aos valores possíveis para todos os spins alinhados.

Relação com o modelo de Ising

É importante remarcar que para o modelo de Potts é equivalente ao modelo de Ising com constante de acoplamento a menos de uma constante aditiva no Hamiltoniano.


nesse caso os spins e tem apenas dois valores possíveis e


logo considerando como valores possíveis para os spin como e encontramos


Simulação Monte Carlo

A abordagem utilizada para simular por Monte Carlo um sistema seguindo o modelo de Potts com Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle q} pequeno é naturalmente similar àquela utilizada para o modelo de Ising, seguindo o algoritmo de Metropolis. Entretanto para valores mais elevados de Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle q} esse algoritmo se torna ineficiente e o sistema demora um tempo muito longo para entrar em equilíbrio térmico.

Amostragem por importância

Para entender porque o algoritmo de Metropolis não é otimal para uma simulação Monte Carlo de um sistema seguindo o modelo de Potts devemos nos lembrar como ele resolve o problema de amostragem por importância.

As condições necessárias para a amostragem por importância são:

  • Ergodicidade: a garantia de que qualquer estado do sistema é acessível à partir de qualquer outro estado dado um comprimento suficientemente grande da cadeia de Markov.
  • Balanço detalhado: a garantia de que a cadeia de Markov de matriz estocástica Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(\mu \rightarrow \nu)} vai convergir, quando o sistema atingir o equilíbrio térmico, para uma dada distribuição Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle {p_\mu}} .
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle p_\mu P(\mu \rightarrow \nu) = p_\nu P(\nu \rightarrow \mu)}

No caso do ensemble canônico essa distribuição é a distribuição de Boltzmann

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle p_\mu = \frac{1}{Z}e^{-\beta E_\mu}}

onde Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z} é a função de partição e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \beta = \frac{1}{k_B T}} é o inverso da temperatura.

Considerando a probabilidade de transição de estado como o produto de uma probabilidade de seleção de um novo estado Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(\mu \rightarrow \nu)} , a probabilidade de considerar Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \nu} como o próximo estado na cadeia dado o estado atual Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle /mu} , e uma probabilidade de aceitação de transição Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle A(\mu \rightarrow \nu)}

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(\mu \rightarrow \nu) = g(\mu \rightarrow \nu)A(\mu \rightarrow \nu)}

o algoritmo de Metropolis atribui um valor fixo e uniforme para a probabilidade de seleção

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(\mu \rightarrow \nu) = g(\nu \rightarrow \mu) = \frac{1}{N} \quad \forall \mu, \nu}

que claramente garante a ergodicidade, restando apenas uma condição sobre os valores das probabilidades de aceitação:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{A(\mu \rightarrow \nu)}{A(\nu \rightarrow \mu)} = \frac{p_\nu}{p_\mu} = e^{\beta (E_\nu - E_\mu)}}

que é satisfeita com a seguinte lei de seleção:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle  A(\mu \rightarrow \nu) = \begin{cases}  e^{-\beta(E_\nu - E_\mu)}, \quad \text{se } E_\nu > E_\mu \\  1, \quad \text{caso contrario}  \end{cases}}

O problema desse algoritmo para um modelo como o de Potts que admite um número elevado de estados possíveis para o spin é evidenciado quando consideramos um sistema à baixa temperatura. Para altas temperaturas a probabilidade de aceitação é igual à Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1} ou suficientemente alta por conta de um Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \beta} pequeno tornando algoritmo eficiente, entretanto à baixa temperatura os spins tendem à se alinhar com seus vizinhos constituindo o fenômeno do ferromagnetismo.

Referências

Potts, Renfrey B. (1952). "Some Generalized Order-Disorder Transformations". Mathematical Proceedings.

M. E. J. Newman, G. T. Barkema, "Monte Carlo Methods in Statistical Physics". Oxford University Press Inc., New York, 1999.