Grupo - Modelo Sznajd

De Física Computacional
Revisão de 16h02min de 24 de janeiro de 2018 por Csdionatan (discussão | contribs)
Ir para navegação Ir para pesquisar

Introdução

O Modelo de Sznajd ou United we stand, divided we fall (USDF) é um modelo recente, proposto em 2000 para entender a dinâmica de opiniões através da física estatística. No ponto de vista de um físico, o comportamento de indivíduos a as interações entre eles constituem um nível microscópico de um sistema social. O modelo introduz o fenômeno chamado validação social:

Validação Social: Se duas pessoas compartilham da mesma opinião, os seus vizinhos começarão a concordar com elas.

Discordância Destrutiva: Se as pessoas discordam, os vizinhos começarão a argumentar com elas.

O método e Formulação Matemática

Opinião social é vinda de opiniões individuais, representadas neste modelo por spins de Ising de forma "yes" e "no". A dinâmica segue a relação da validação social:

  1. A cada timestep um par de sping Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle S_{i}, S_{i+1}} são escolhidos para tentar mudar os seus vizinhos mais próximos
  2. Se Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle S_{i} = S_{i+1}} , então e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle S_{i+2} = S_{i}} (validação social)
  3. Se Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle S_{i} = -S_{i+1}} , então Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle S_{i-1} = S_{i+1}} e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle S_{i+2} = S_{i}}

No modelo, dois tipos de estados estacionários são alcançáveis: consenso completo(ferromagnético) e impasse(antiferromagnético). A principal diferença para o Ising é que a informação flui para fora. O modelo de Sznajd ou USDF tem sido modificado e utilizado em marketing, política e finanças.

Modificações

Fala-se que o estado antes mencionado, o antiferromagnetismo, pode ser considerado não realístico para representar o comportamento de indivíduos em uma sociedade. Para tentar evitar este caso, propõe-se o seguinte:

  1. A cada timestep um par de sping Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle S_{i}, S_{i+1}} são escolhidos para tentar mudar os seus vizinhos mais próximos igual anteriomente
  2. Se Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle S_{i} = S_{i+1}} , então Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle S_{i-1} = S_{i}} e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle S_{i+2} = S_{i}} (validação social)
  3. Se Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle S_{i} = -S_{i+1}} , então Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle S_{i-1} = S_{i}} e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle S_{i+2} = S_{i}}

Estas regras ficaram conhecidas como algo do tipo: "Se você não sabe o que fazer, ou faz nada ou faz qualquer coisa." É um tanto quanto óbvio que o modelo unidimensional não representa bem um sistema social e que modelos bidimensionais são bem mais realistas. Algo interessante mencionar é a atualização simultânea para sistemas de duas dimensões: uma atualização simultânea leva a uma muito maior dificuldade de atingir o estado de consenso total. Isso foi mostrado por Stauffer

Bibliografia