Dinâmica Molecular - Método das Caixas
Neste estudo, foi investigado o desempenho e a precisão de simulações de dinâmica molecular utilizando o potencial de Lennard-Jones. Foram comparados dois métodos computacionais: o método tradicional, que calcula as interações e as forças entre todos os pares de partículas que estão presas em uma caixa bidimensional, e o método baseado em células, que otimiza os cálculos ao limitar o alcance das interações às células vizinhas. Ambos os métodos foram implementados em duas dimensões com condições periódicas de contorno (PBC).
Avaliamos o desempenho dos métodos analisando o tempo de execução em função do número de partículas. Os resultados mostram que o método baseado em células reduz significativamente o tempo de execução para sistemas grandes, demonstrando sua eficiência e reprodutibilidade. A conservação da energia, incluindo as energias cinética, potencial e total, foi validada para ambos os métodos ao longo do tempo, mostrando que o método mantém o significado físico da simulação.
INTRODUÇÃO
Inicialmente, o problema do tempo perdido em simulações normais de dinâmica molecular está relacionado ao crescimento do número de cálculos necessários conforme aumenta o número de partículas no sistema. Essa questão tem um impacto direto na eficiência e no tempo de execução de simulações, já que para cada par de partículas, é necessário calcular a distância relativa, aplicar o potencial desejado, e determinar a força resultante. Portanto, a parte temporal mais custosa na simulação está no calculo de forças, e na determinação da distância de cada partícula.
Para N partículas, temos pares de interação, e se tivermos um sistema com um número significativamente grande de partículas, o problema terá uma complexidade de . Essa dependência quadrática do número de partículas torna as simulações normais impraticáveis para sistemas com grande número de partículas já que o tempo de execução cresce rapidamente. Além disso, são necessários recursos computacionais elevados para simulações maiores pois a demanda por processamento irá crescer cada vez mais, exigindo computadores mais potentes ou tempo de execução excessivo.
Portanto há a necessidade de diminuir a ordem para que o tempo seja menos custoso nas simulações. Para isso, existem diversos algorítmos e métodos que podem ser uteis, como o Método das Caixas, o Algorítmo de Edwald e PME, o Método de Multipolos Hierárquicos, e a Implementação Paralela. O objetivo deste trabalho é desenvolver o Método das Caixas, ou Método das Células, para a otimização das simulações.
Explicando o método
O princípio básico do método das caixas é diminuir o número de cálculos de forças de interação entre as partículas, já que em uma simulação normal é computado a interação de cada uma delas com todas as outras. Porém, como as forças de interação são geralmente de curto alcance, basta calculá-las entre cada partícula e seus vizinhos mais próximos.