Equação de Ginzburg-Landau complexa

De Física Computacional
Revisão de 12h52min de 27 de abril de 2024 por Joaovgm (discussão | contribs)
Ir para navegação Ir para pesquisar

A equação de Ginzburg-Landau complexa (CGLE) surgiu inicialmente em 1969 como um modelo para o inicio de instabilidades em problemas de convecção de fluídos. A partir de então, ela se tornou uma das equações não lineares mais estudadas da física, descrevendo uma variedade enorme de fenômenos como:

  • Ondas não lineares;
  • Transições de fase de segunda ordem;
  • Supercondutividade;
  • Superfluidez;
  • Condensado de Bose-Einstein.


A equação de Ginzburg-Landau complexa, quando escrita de modo a minimizar o número de constantes, é dada pela equação abaixo:

É possível deduzir a CGLE a partir do oscilador linear harmônico por meio de argumentos de simetria, encontrando a equação de Stuart-Landau, e, em seguida, considerando um sistema estendido no espaço.

Dedução

A energia de um oscilador harmônico é expressa pela equação abaixo, onde é a energia, e a coordenada e seu respectivo momento, é a massa e a frequência angular