Corda Vibrante

De Física Computacional
Revisão de 10h40min de 20 de abril de 2024 por Marcospasa (discussão | contribs) (análise espectral: bases enumeráveis)
Ir para navegação Ir para pesquisar

A equação da onda

Método FTCS

Sobre estabilidade

Análise espectral

Uma possível forma para quantitativamente analisar o som gerado por uma corda vibrante é estudar as frequências que compõem o seu movimento, técnica essa chamada de análise espectral. Antes de prosseguirmos vamos recapitular alguns resultados da álgebra linear

Supremacia da álgebra linear

O seguinte conjunto é o espaço de funções reais de uma variável. Esse conjunto é um espaço vetorial, logo podemos utilizar toda a artilharia da álgebra linear, em especial, estamos interessados no sub-espaço gerado pela base [1], pois elementos de , interpretados como sinais sonoros, representam um frequência pura de valor . Dessa forma, um sinal arbitrário pode ser escrito em termos das frequências puras que o formam

E podemos extrair suas coordenadas ( e ), fazendo o produto escalar com os elementos da base

Se o domínio de é limitado, digamos , então uma base infinita com cardinalidade enumerável (em contraste com a base anterior, que possui cardinalidade não enumerável) é suficiente para representar , uma possível base ortonormal é a seguinte: , em que . Dessa forma, a representação e coordenadas de ficam

É impossível falar sobre bases enumeráveis de um sub-espaço de sem representar esse canhão matemático com uma animação. Abaixo segue uma animação que calcula as primeiras coordenadas ( e ) de um sinal qualquer e sobrepõem a série obtida incrementando até as duas curvas serem indistinguíveis a olho nu.

Agora, considerando uma corda vibrante, o nosso sinal sonoro provém da vibração de um ponto específico da corda, digamos em , então a função que representa esse sinal é

Condição inicial para uma corda de violão

Notas

  1. A constante está presente por questão de normalização. Esse caso pode parecer um pouco estranho, dado que não é possível normalizar os cossenos e senos, pois sua integral em todo a reta não é definida, mas o que se deseja é a seguinte propriedade que é safisfeita quando