Corda Vibrante
A equação da onda
Método FTCS
Sobre estabilidade
Análise espectral
Uma possível forma para quantitativamente analisar o som gerado por uma corda vibrante é estudar as frequências que compõem o seu movimento, técnica essa chamada de análise espectral. Antes de prosseguirmos vamos recapitular alguns resultados da álgebra linear
Supremacia da álgebra linear
O seguinte conjunto é o espaço de funções reais de uma variável. Esse conjunto é um espaço vetorial, logo podemos utilizar toda a artilharia da álgebra linear, em especial, estamos interessados no sub-espaço gerado pela base [1], pois elementos de , interpretados como sinais sonoros, representam um frequência pura de valor . Dessa forma, um sinal arbitrário pode ser escrito em termos das frequências puras que o formam
E podemos extrair suas coordenadas ( e ), fazendo o produto escalar com os elementos da base
Se o domínio de é limitado, digamos Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle t \in [0, T]} , então uma base infinita com cardinalidade enumerável (em contraste com a base anterior, que possui cardinalidade não enumerável) é suficiente para representar Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle s(t)} , uma possível base ortonormal é a seguinte: Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bigg\{ \sqrt{\frac{1}{T}}, \sqrt{\frac{2}{T}}sen(\omega_n t), \sqrt{\frac{2}{T}}cos(\omega_n t) \bigg\}_{n \in \mathbb{N^*}}} , em que Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \omega_n = \frac{n\pi}{T} } . Dessa forma, a representação e coordenadas de Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle s(t)} ficam
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{aligned} s(t) &= a_0\sqrt{\frac{1}{T}} + \sqrt{\frac{2}{T}}\sum_{n=1}^{\infty}\bigg[a_n cos(\omega_n t) + b_n sen(\omega_n) \bigg] \\ a_0 &= \int_0^T s(t) \sqrt{\frac{1}{T}}dt \\ a_n &= \int_0^T s(t) \sqrt{\frac{2}{T}}cos(\omega_n t)dt \\ b_n &= \int_0^T s(t) \sqrt{\frac{2}{T}}sen(\omega_n t)dt \\ \end{aligned} }
É impossível falar sobre bases enumeráveis de um sub-espaço de Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{R}^{\mathbb{R}} } sem representar esse canhão matemático com uma animação. Abaixo segue uma animação que calcula as primeiras Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle N} coordenadas (Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_0,\dots,a_N} e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle b_1,\dots,b_N} ) de um sinal qualquer e sobrepõem a série obtida incrementando Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle N} até as duas curvas serem indistinguíveis a olho nu.
Agora, considerando uma corda vibrante, o nosso sinal sonoro provém da vibração de um ponto específico da corda, digamos em Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=x_o} , então a função que representa esse sinal é Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle y(x_o, t)}
Condição inicial para uma corda de violão
Notas
- ↑ A constante Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1/\sqrt{\pi} } está presente por questão de normalização. Esse caso pode parecer um pouco estranho, dado que não é possível normalizar os cossenos e senos, pois sua integral em todo a reta não é definida, mas o que se deseja é a seguinte propriedade Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_{\mathbb{R}}A_{\omega}cos(\omega t) \cdot A_{\omega'}cos(\omega' t)dt = \delta(\omega-\omega') } que é safisfeita quando Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle A_{\omega} = A_{\omega'} = 1/\sqrt{\pi}, ~ \forall \omega,\omega'}