Grupo3 - Ondas2

De Física Computacional
Revisão de 23h30min de 25 de outubro de 2017 por Lucasdoria (discussão | contribs) (→‎Introdução)
Ir para navegação Ir para pesquisar

Introdução

Equações diferenciais parciais (EDP's) hiperbólicas geralmente podem ser formuladas a partir de teoremas de conservação. Um exemplo é a equação do tipo:

onde é o vetor de densidades da quantidade conservada, i.e., , é o fluxo de densidade e é um termo genérico representando fontes ou sumidouros.

Uma classe especial de equações hiperbólicas são as chamadas equações de adveção, na qual a derivada temporal da quantidade conservada é proporcional à sua derivada espacial. Nesses casos, é diagonal e dada por:

,

onde é a matriz identidade.

Considerando apenas uma dimensão e com , temos a equação de adveção:

,

onde é a velocidade de propagação do pulso gerado. A equação admite uma solução analítica da forma , representando uma onda se movendo na direção .

A equação da onda em uma dimensão é uma EDP hiperbólica de segunda ordem dada por

E admite duas soluções, representadas por pulsos, e .

Assumindo que na equação da onda, nos restringimos a problemas lineares. Além disso, se escrevermos

então a equação da onda pode ser escrita como um sistema de três equações diferenciais de primeira ordem:

Em notação vetorial, o sistema acima pode ser reescrito na forma conservativa como: ,

onde

Condição CFL

Uma condição necessária mas nem sempre suficiente para a convergência de equações diferenciais parciais resolvidas a partir de métodos de diferença, formulada por Courant, Friedrichs e Lewy em 1928 (aprender a referenciar), conhecida como condição CFL, é formulada a partir do termo de “domínio de dependência”.

Considerando, por exemplo, a equação da advecção (citar a equação da advecção) em uma aproximação a partir de métodos de diferença em sua forma explícita , diz-se que o valor de depende dos valores anteriores de e , e esses dois pontos dependem, novamente, de outros dois pontos em tempos anteriores. Todos esses pontos dependentes formam o domínio de dependência do valor , representado abaixo (botar figura do domínio de dependência).

A condição CFL enuncia que a condição mínima para que haja estabilidade em métodos de diferenças o domínio de dependência da equação diferencia parcial, dado por sua equação característica, deve estar situado dentro do domínio de dependência do esquema numérico.

A partir dessa condição, define-se o número CFL como

onde é um passo na malha temporal e é um passo na malha espacial. Para casos unidimensionais, como o que será tratado aqui, a condição CFL é satisfeita se r

Um uso da condição CFL é determinar o tamanho do passo temporal, sabendo-se e :

onde o fator .

O número CFL pode ser entendido como um fluxo numérico advectivo adimensionalisado pelas malhas espacial e temporal do problema. De um ponto de vista matemático, ele garante que o domínio numérico de dependência é sempre maior que o domínio físico. De um ponto de vista físico, é garantido que a velocidade de propagação de qualquer perturbação, como uma onda, seja menor ou ao menos igual que a velocidade de propagação numérica, fazendo com que a distância propagada pela perturbação não seja maior do que a divisão da malha espacial:

O Problema Físico

O Modelo de Corda Ideal

Para uma primeira abordagem da equação da onda, podemos primeiro dividir o comprimento da corda em intervalos de comprimentos iguais, dessa forma . Cada intervalo é discretizado, representado por , . Também podemos dividir o tempo em intervalos iguais e denotá-los como , .

Tendo feita a discretização das variáveis, podemos aproximar a equação da onda por diferenciação finita, utilizando derivadas centradas da seguinte forma:

onde representa o valor discretizado de .

Assim, chegamos em uma equação discretizada:

.

Sabendo que essa discretização da equação da onda pode ser verificada como sendo o método Leapfrog (ver seção do método de Leapfrog), podemos resolver a equação para para sabermos o deslocamento de uma partição da corda no momento de tempo seguinte, assim obtendo

,

onde

Um Quadro Mais Realístico - O Modelo de Corda Rígida

Para nos aproximarmos de um modelo mais real, podemos adicionar um termo à equação original da onda que corresponde ao efeito de fricção em uma corda. De acordo com [1], a equação da onda mais geral com efeito de fricção pode ser escrita como

onde é a velocidade transversal de propagação do pulso na corda, dada pela relação (sendo a tensão na corda e a densidade linear da mesma), é um parâmetro adimensional de fricção que representa a rigidez da corda e o comprimento da corda.

O parâmetro é dado por

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon = \kappa² \frac{E S}{T L^2}} ,

onde é o raio da corda, é o Módulo de Young e a área da secção da corda.

Discretizamos a equação da seguinte maneira:

e resolvemos para , obtendo:

O fato de essa discretização depender do deslocamento da corda em posições e implica em precisarmos simular "pontos fantasmas" quando integramos os extremos das cordas. Para fazermos isso, podemos ou utilizar a aproximação ou podemos considerar esses "pontos fantasmas" como pontos presos e, portanto, sempre iguais a zero.

Os Métodos Utilizados

Foi realizada uma abordagem ao problema da corda real a partir de três métodos diferentes de integração numérica. Os três são métodos para fins de resolução de equações diferenciais parciais da forma apresentada anteriormente.

O método mais básico é chamado de FTCS (Forward-Time-Centered-Space) e consiste em duas expansões de Taylor ao redor do ponto :

Subtraindo as duas expressões, encontramos a expressão

,

A qual podemos substituir na equação da onda, juntamente com a discretização da derivada parcial temporal. Temos então que, para um sistema linear de equações hiperbólicas:

Visto que essa última notação é mais genérica, ela será utilizada para a explicação dos métodos posteriores.

O Método de Lax-Friedrichs

O método de Lax-Friedrichs consiste em substituir o termo com sua respectiva média espacial, i.e., . Logo, temos a seguinte equação de recorrência:

O Método de Leapfrog

Tanto o método FTCS quanto o método de Lax-Friedrichs são métodos de primeira ordem para a derivada temporal. Nessas circunstâncias, deve ser significantemente menor do que , muito abaixo do limite imposto pela condição de Courant.

Uma nova expressão para a derivada temporal, com precisão de segunda ordem é dada por

Substituindo a nova expressão acima no método de FTCS discutido anteriormente, encontramos o método de Leapfrog:

Como o método de Leapfrog foi o mais aplicado na resolução do problema em questão, é interessante um aprofundamento maior do método. Podemos adaptar o método de Leapfrog para o sistema de equações definido para a equação da onda ao fazermos

Com a representação Leapfrog das equações do sistema de três equações, temos:


Com essas duas equações, podemos fazer uma integração utilizando o método de Euler para obter , ou seja, o deslocamento de um determinado ponto no próximo instante de tempo:

Contudo, podemos fazer uma simples substituição das equações e nas equações e e, assim, obtemos que a representação de Leapfrog da equação da onda é dada pela discretização de segunda ordem da própria equação da onda, com . Isso nos dá uma solução de "um passo", onde só precisamos efetuar o cálculo da equação discretizada.

O Método de Lax-Wendroff

O método de Lax-Wendroff é a extensão do método de Lax-Friedrichs de segunda ordem. Calculamos o vetor a partir de um passo médio de Lax-Friedrichs:

,

,

E encontramos os fluxos a partir dos valores de

Logo, com um meio passo de Leapfrog, temos a expressão final do método:

Análise e Discussão dos Resultados

Escolhemos para simular quatro diferentes cordas: as cordas C2, C4 e C7 de um piano cujos dados foram obtidos no artigo sobre cordas do Chaigne [3] e uma corda com dados pré-estabelecidos encontrados no livro de física computacional do Giordano [1]. Os dados das cordas C2, C4 e C7 estão na tabela abaixo.

C2 C4 C7
Comprimento ()
Massa()
Tensão ()
Divisões
Amostragem de sinal
Parâmetro de fricção

Desses dados, temos que a densidade linear de massa das cordas é dada por

onde é a massa e o comprimento da corda,

onde é a tensão na corda,

e

Para a corda com dados pré-estabelecidos, utilizamos uma corda com 2 metros de comprimento, com velocidade de propagação da onda sendo 300, de 0.01, e parâmetro de fricção de . Supondo a corda inicialmente em repouso, temos que em a corda recebe em seu centro o equivalente à batida do martelo do piano. Supomos que esse estímulo possuía o formato aproximado de uma Gaussiana com amplitude de do comprimento da corda. Então, com o estado inicial sendo um pulso com o formato de um pacote gaussianico e os dados da tabela, simulamos a propagação de ondas em cada uma das cordas.

Utilizando o método de Leapfrog, foi realizada uma primeira simulação para uma onda ideal em uma corda:

Ideal.gif

Corda C2:

C2.gif

Corda C4:

C4.gif

Corda C7:

C7.gif

Corda com as definições do Giordano:

Giordano.gif

Análise de Erro e Estabilidade dos Métodos

Estabilidade do método Leapfrog

Pela estabilidade de Von Neumann, podemos escrever que

Para , a equação da discretização da onda pode ser reescrita como

Essa escolha com

nos dá a solução exata sem dispersão numérica. Contudo, é válido somente no caso de uma corda ideal. É conveniente escrever a condição acima em termos da amostragem de sinal e a frequência fundamental da corda , o que nos leva a

O teorema de Nyquist diz que a frequência superior no espectro deve ser menor do que para evitar serrilhamento e para garantir uma reconstrução única e contínua. Logo, no caso ideal quando as autofrequências da corda são igualmente espaçadas (), a condição de Nyquist indica que o número máximo de frequências no espectro é . Isso significa que essa condição pode ser usada para selecionar o número apropriado de pontos espaciais para a corda. Entretanto, como é um inteiro, apenas valores discretos da frequência natural podem ser obtidos sem erros de trucamento, ou seja, usando . Como series discretas não costumam ser utilizadas, precisamos aceitar pequenos erros de truncamento para ajustar , ou seja, utilizando . No caso de uma onda com fricção, temos que é um valor de boa estabilidade.

Conclusões (?)

Referências Bibliográficas


Predefinição:Reflist

  1. Erro de citação: Marca <ref> inválida; não foi fornecido texto para as refs chamadas giordano