Trabalhos 2022/2

De Física Computacional
Revisão de 19h28min de 12 de fevereiro de 2023 por Dzorrer (discussão | contribs) (→‎Shooting Method)
Ir para navegação Ir para pesquisar

Equações de Laplace e Poisson - Eletrostática

Shooting method e Método de Crank-Nicolson aplicados à Equação de Schrödinger

O objetivo deste trabalho é aplicar o Shooting method (método do chute) para encontrar as primeiras funções de onda espaciais da Equação de Schrödinger para o caso do poço de potencial infinito. Após, será realizada a evolução temporal através do Método de Crank-Nicolson.

Método de Crank-Nicolson

Seja a equação diferencial

,

onde é um operador diferencial linear em r.

Em forma discretizada no tempo, pode-se escrever

.

Por simetria, pode-se escrever a equação acima utilizando um f à direita:

A equação acima é dita "explícita" pois, para o cálculo de , só é utilizado o valor já explicitamente calculado . Já a equação anterior é chamada implícita pois está presente explicitamente. Em termos numéricos, um método peca pelo excesso enquanto o outro o faz pela falta, de modo que um resultado mais satisfatório pode ser obtido ao tomar-se a média dos dois:

Após alguma álgebra:

.

Chamando e , onde I indica a matriz identidade, pode-se reescrever a equação acima na seguinte maneira:

.

Trata-se do método de Crank-Nicolson, mais estável e preciso do que os métodos implícito e explícito. Caso o problema apresentar condições de contorno, estas serão devidamente implementadas nos elementos das matrizes M e E.

Equação de Schrödinger

Seja a equação de Schrödinger unidimensional

.

Efetuando a discretização das variáveis através do Método de Crank-Nicolson, obtém-se:

Substituindo as discretizações na eq. de Schrödinger:

Supondo e separando as partes explícita e implícita, obtém-se, após alguma álgebra:

Definindo

e

obtém-se:

A equação acima pode ser escrita em forma matricial, de modo que:

onde

e

Para avaliar a evolução temporal do sistema, é necessário encontrar . Utilizando resultados anteriores, pode-se obter através da seguinte relação:

Poço de potencial infinito

Para o presente caso a ideia é obter a evolução temporal do sistema, impondo condições de contorno iguais a zero, de modo que os operadores e ficam:

e

A ideia é que o primeiro e o último termo do tanto do vetor quanto do vetor seja constante, o que satisfaz as condições de contorno do presente caso. Também é interessante notar que os índices são todos constantes, visto que no presente caso o potencial dentro do poço é nulo.

Implementando o algoritmo descrito acima, obteve-se:

Evolução temporal (n=1)

Evolução temporal para o caso n=1. Nesta animação e nas subsequentes, foram sobrepostas as partes real e imaginária da equação de Schrödinger: a linha azul diz respeito à parte real enquanto a amarela, à imaginária.

Evolução temporal (n=2)

Na figura acima, tem-se a evolução do caso n=2.

Evolução temporal (n=3)

Por último, o caso n=3.