Modelo de Potts - 2D
O Modelo
Modelo de Potts pode ser considerado uma generalização do Modelo de Ising. Enquanto no Ising, os spins podem assumir valores 1 ou -1, no Modelo de Potts, os spins podem assumir valores que dependem de uma variavél da seguinte forma: . A quantidade nos fornece as possíveis orientações para os spins. Os valores que pode assumir são . Dessa forma, um Modelo de Potts bidimensional com possui uma rede bidimensional de spins com 10 orientações diferentes. Nas figuras abaixo podemos ver três possíveis orientações dos spins.
O Hamiltoniano de interação, na ausência de campo magnético, pode ser escrito como
onde é a constante de acoplamento que determina a intensidade da interação e é a delta de Kronecker, definida como 1 se e 0 se .
Uma característica importante desse modelo é que as orientações em si não são relevantes, uma vez que o Hamiltoniano é definido por uma Delta de Kronecker. A única informação relevante é se os spins são iguais ou diferentes. Conforme veremos adiante, para o caso de , recaímos no conhecido Modelo de Ising.
Se incluirmos o campo magnético, o Hamiltoniado de Potts fica
onde $\beta$
Relação com o Modelo de Ising
O Modelo de Ising é obtido quando tomamos na expressão para . Para que possamos reescrever o Hamiltoniano de Potts em uma forma semelhante ao Hamiltoniano de Ising, vamos somar uma constante aditiva, de modo que o Hamiltoniano fica
Vemos que se os spins são iguais, obtemos e se os spins são diferentes, obtemos . No Modelo de Ising, nós tínhamos e , respectivamente. Uma consequência desse fator meio de diferença é que a temperatura crítica para o Modelo de Potts, para , é .
Algoritmo de Metropolis
Vamos implementar o Modelo de Potts utilizando o algoritmo de Metropolis.
O algoritmo de Metropolis é um método de Cadeia de Markov Monte Carlo (MCMC) para obter amostras aleatórias a partir de uma distribuição de probabilidade da qual a amostragem direta é difícil. O procedimento para a implementação do algoritmo é apresentado abaixo.
1. Inicialize
a) Escolha um estado inicial ;
b) Coloque
2. Itere
a) Gere um estado candidato aleatório de acordo
b) Calcule a probabilidade de aceitação
c) Aceite ou rejeite:
1) Gere um número aleatório uniforme ;
2) E se , aceite o novo estado e defina ;
3) E se , rejeite o novo estado e copie o estado antigo para frente ;
4) Incremente: coloque t = t + 1
Em nosso caso, a distribuição será , onde .
Resultados das simulações
Definimos um Monte Carlo Step (MCS) como sendo o tempo em que a rede bidimensional com spins é percorrida pelo algoritmo. Ao final de flips de spin (seja com probabilidade ou com probabilidade ), contamos um MCS. Além disso, em todas as simulações, utilizamos em unidades de .
Energia
Energia em cada MCS para Q indo de 2 até 10 e L = 64 utilizando o algoritmo de Metropolis. | |
---|---|
Magnetização
Magnetização em cada MCS para Q indo de 2 até 10 e L = 64 utilizando algoritmo de Metropolis. | |
---|---|
Códigos utilizados
O código foi escrito em Fortran.
Referências
D. P. Landau, K. Binder. A Guide Monte Carlo Simulations in Statistical Physics. Cambridge University. New York. 2000.
L. M. Barone, E. Marinari, G. Organtini, F. Ricci-Tersengui. Scientific Programming: C-Language, Algorithms and Models in Science. World Scientific. Singapore. 2013.