Em construção
Grupo: Gabriel Schmökel, Julia Remus e Pedro Inocêncio Rodrigues Terra
Introdução
Tsunami é um fenômeno da natureza caracterizado por uma sucessão de ondas marinhas, que devido ao seu grande volume e alta velocidade, podem se tornar catastróficas ao atingir a costa. Sismos, erupções vulcânicas, deslizamentos de terra, impactos e outros movimentos submarinos são a causa para a formação deste evento, sendo a grande maioria provocado pelos movimentos das placas tectônicas.
Formação de um Tsunami
Vamos analisar a sequência de passos da formação de uma Tsunami formada a partir de um abalo sísmico:
I. A convergência das placas tectônicas, devido as correntes de convecção, faz com que existam forças de tensão entre as placas.
IMAGEM
A tensão entre as placas eventualmente ultrapassa o limite máximo, o que provoca o deslizamento brusco de uma das placas sobre a outra, gerando um grande deslocamento de volume de água na vertical. Como a tsunami ocorre em grandes profundidades, ela pode passar despercebida para um barco que navega nas proximidades, uma vez que amplitude da onda é menor.
IMAGEM
II. A onda gerada se propaga ao longo de todas as direções do plano da água.
IMAGEM
III. A medida que a onda se aproxima da superfície ela diminui sua velocidade e aumenta sua amplitude
IMAGEM
Temos o interesse de descrever fisicamente a propagação da Tsunami de acordo com a topografia da água e do mar, por essa razão não iremos estudar o efeito físico que causou o deslocamento do volume de água.
Teoria
Derivação das Equações de Águas Rasas
Para obter as equações de águas rasas devemos partir da equação da continuidade e das equações da quantidade de movimento de Navier-Stokes:
é a densidade; p é a pressão; é o vetor velocidade do fluído, onde u,v e w são as velocidades das partículas que compõe o fluído nas direções x,y,z; é o vetor aceleração da gravidade; é o tensor tensão, onde as componentes deste tensor são as tensões normais e tangenciais de cisalhamento, expressas por , no qual indica a direção e o plano normal.
Introduzindo as condições de contorno [1] para a superfície e para a profundidade do oceano :
, onde
, onde
é o deslocamento vertical da água sobre a superfície em repouso, é o vetor velocidade do fluído nas direções horizontais x e y.
A equação da continuidade em (3) pode ser simplificada, já que a densidade do fluído no oceano não varia significativamente com o tempo e a posição.
Integrando a expressão da continuidade em (6), utilizando a regra da integral de Leibniz [1], com os limites indo de até chegamos na seguinte expressão:
Teorema de Leibniz:
Substituindo as condições de contorno da profundidade (5) em (7) obtemos:
Substituindo a condição de contorno da superfície (4) em (9):
(10) é a primeira das equações das águas rasas que obtemos, onde é o comprimento da água total do fundo do oceano até a amplitude da onda.
Podemos expressar (10) através do fluxo de descarga nas direções x e y, estás quantidades estão relacionadas com as velocidades da seguinte forma [1]:
Substituindo (11) e (12) em (10) chegamos na representação do fluxo de descarga para uma das equações de águas rasas.
Escrevendo as quantidades de movimento de Navier-Stokes nas componentes x,y e z:
Falhou ao verificar gramática (erro de sintaxe): {\displaystyle \frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} + w\frac{\partial u}{\partial z} +\frac{1}{\rho}\frac{\partial P}{\partial x} +g_x = 0 \qquad (14) }
Falhou ao verificar gramática (erro de sintaxe): {\displaystyle \frac{\partial v}{\partial t} + u\frac{\partial v}{\partial x} + v\frac{\partial v}{\partial y} + w\frac{\partial v}{\partial z} +\frac{1}{\rho}\frac{\partial P}{\partial x} +g_y = 0 \qquad (15) }
Na componente z em (15) negligenciamos a aceleração das partículas, pois a aceleração da gravidade é muito maior. Também tomamos como nulos as componentes e em (14) e passamos a definir .
Resolvendo equação diferencial da componente z em (16) podemos obter a pressão, a qual é hidrostática.
Substituindo a pressão em (14):
Integrando a equação (18) em relação a componente z com os limites indo
Integrando a expressão (18), utilizando a regra da integral de Leibniz [1] e as condições de contorno (4) e (5), com os limites indo de até chegamos em outra das equações de águas rasas:
Generalizando a equação (18), para a componente y, obtemos a última das equações de águas rasas:
Na representação de fluxo de cargas as expressões (18) e (19) são apresentadas respectivamente como:
Iremos escrever as equações das águas rasas considerando o tensor de estresse . Os elementos deste tensor são responsáveis por causar nas partículas tensões tangenciais e perpendiculares, onde as tensões tangenciais são representadas por elementos onde , e as perpendiculares por elementos onde
Decompondo nas componentes x,y, e z de presente em (4):
Considerando o fluído Newtoniano, então as tensões de cisalhamento serão proporcionais a uma taxa de deformação, onde a constante de deformidade é a viscosidade.
Substituindo (25),(26) em (25), integrando em relação a componente z, utilizando a regra de Leibnz e as condições de contorno (3) e (4), obtemos:
Onde é a constante de viscosidade turbulenta, é uma força de resistividade relativa ao movimento do fluído com o fundo do oceano na direção x. Podemos negligenciar a constante de turbulência na situação em que não temos inclinações abrutas no fundo do mar. [1].
Considerando que o fluído é uniforme, então a expressão para Falhou ao verificar gramática (erro de sintaxe): {\displaystyle \frac{\tau_x}{\rho} é }
é:
é o coeficiente de fricção, porém o coeficiente de rugosidade de Manning é mais usado, alguns valores deste coeficiente são:
- Cimento puro e metal liso
- Terra lisa
- Pedras, ervas daninhas
- Péssimo relevo de canal
- Bom relevo de canal
O coeficiente de fricção e o de rugosidade de Meanning estão relacionados por:
Substituindo (30) em (29) obtemos:
Generalizando a expressão (31) para a componente y.
Adicionando, repectivamente, (31) e (32) nas expressões (20) e (21), obtemos as equações de águas rasas considerando as forças de fricção do fundo do oceano.
Forma Conservativa
Um modelo mais simples - desconsiderando a fricção, viscosidade do líquido e as forças de Coriolis sobre ele - pode ser obtido [2][3]. Para desenvolvê-lo são necessárias algumas premissas:
- O comprimento da onda é muito maior que as contribuições na direção
- A aceleração na direção da velocidade na direção é zero
- As componentes das velocidades em e em ( e ) não variam em
O sistema então pode ser descrito pelas seguintes equações:
Onde é a altura do fluido desde a base, são as velocidades médias na direções , é a constante gravitacional e é função que descreve a superfície onde acontece o movimento [1].
Forma dissipativa
As equações de águas rasas na forma não conservativa são dadas por (10),(33) e (34). Para descrever numericamente o fenômeno foi utilizado discretização por diferenças finitas, onde realizamos derivadas centradas na região espacial, e para frente no região temporal. O erro de truncamento é de ordem na região espacial, enquanto na temporal é de ordem . O método é conhecido como leap-frog method devido a discretização central na região espacial.
Discretizando a expressão (10) pelo leap-frog method:
Discretizando a expressão (33) pelo leap-frog method:
Definindo as quantidades:
Das quantidades definidades e da derivada parcial do fluxo de descarga em relação ao tempo temos a respectiva avanço temporal para M:
Generalizando a expressão (43) para o fluxo de descarga N temos:
Simulações Computacionais de Tsunamis
Forma conservativa 2D
Para descrever numericamente o fenômeno foi utilizado discretização por diferenças finitas e o método pra frente no tempo e no espaço (FTCS). As equações discretizadas podem ser observadas abaixo.
Para os contornos foi utilizado que:
- Nos contornos de x: , discretizando essa derivada temos que:
- Nos contornos de y: , discretizando essa derivada temos que:
No desenvolvimento do programa não foi conseguido alcançar os resultados esperados, pois o sistema não converge: a velocidade aumenta e diminui infinitamente, fazendo com que a altura da onda aumente indefinidamente. O código foi escrito na linguagem Python, pois não conseguimos entender o erro.
Foi cosiderada uma superfície constante e, desta forma, suas derivadas são nulas e não interferem no cálculo.
Forma dissipativa 2D
Os exemplos que seguem utilizam as equações de ondas rasas (38),(43) e (44) para calcular os passos de tempo de , , , onde as funções em python atualiza_eta, atualiza_M, e atualiza_N implementam computacionalmente isto. Para implementar estás funções e outras ideias do nosso programa, o seguinte código fonte da referência foi usado como base.
def atualiza_eta(eta, M, N, dx, dy, dt, nx, ny):
for j in range(1,nx-1):
for i in range(1,ny-1):
dMdx = (M[j+1,i] - M[j-1,i]) / (2. * dx)
dNdy = (N[j,i+1] - N[j,i-1]) / (2. * dy)
eta[j, i] = eta[j, i] - dt * (dMdx + dNdy)
#Condições de contorno do problema
eta[0,:] = eta[1,:]
eta[-1,:] = eta[-2,:]
eta[:,0] = eta[:,1]
eta[:,-1] = eta[:,-2]
return eta
def atualiza_M(eta, M, N, D, g, h, n, dx, dy, dt, nx, ny):
M2 = M **2 / D
MN = M * N / D
fric = g * n**2 * M * np.sqrt(M**2 + N**2) / D**(7./3.)
for j in range(1,nx-1):
for i in range(1,ny-1):
dM2dx = (M2[j+1,i] - M2[j-1,i]) / (2. * dx)
dMNdy = (MN[j,i+1] - MN[j,i-1]) / (2. * dy)
dETAdx = (eta[j+1,i] - eta[j-1,i]) / (2. * dx)
M[j, i] = M[j, i] - dt * (dM2dx + dMNdy + g * D[j,i] * dETAdx + fric[j,i])
return M
def atualiza_N(eta, M, N, D, g, h, n, dx, dy, dt, nx, ny):
MN = M * N / D
N2 = N**2 / D
fric = g * n**2 * N * np.sqrt(M**2 + N**2) / D**(7./3.)
for j in range(1,nx-1):
for i in range(1,ny-1):
dMNdx = (MN[j+1,i] - MN[j-1,i]) / (2. * dx)
dN2dy = (N2[j,i+1] - N2[j,i-1]) / (2. * dy)
dETAdy = (eta[j,i+1] - eta[j,i-1]) / (2. * dy)
N[j, i] = N[j, i] - dt * (dMNdx + dN2dy + g * D[j,i] * dETAdy + fric[j,i])
return N
A função shallow water waves recebe os parâmetros iniciais do nosso programa, executa o Loop responsável pela atualização das variáveis da amplitude da onda e do fluxo de descarga com o tempo, através da chamada das funções atualiza M,N e eta. Posteriormente, a cada passagem dentro do loop um plot do sistema é feito. Obs: não colocamos todo código da função shallow_water na imagem a seguir, apenas a que mencionamos neste parágrafo.
def shallow_water(eta0, M0, N0, h, g, n, nt, dx, dy, dt, X, Y):
eta = eta0.copy()
M = M0.copy()
N = N0.copy()
D = eta + h
# ...
for k in range(1,nt):
eta = atualiza_eta(eta, M, N, dx, dy, dt, nx, ny)
M = atualiza_M(eta, M, N, D, g, h, n, dx, dy, dt, nx, ny)
N = atualiza_N(eta, M, N, D, g, h, n, dx, dy, dt, nx, ny)
D = eta + h
fig = plt.figure(figsize=(8.,6.))
fundo = plt.imshow(-h, 'Purples', interpolation = 'nearest', extent = limites)
amp = plt.imshow(eta, extent = limites, interpolation = 'sinc', cmap = 'seismic', alpha= 0.75, vmin=-0.4, vmax= 0.4)
#plt.title('tempo = %f', dt*n )
#plt.plot(f'Tempo {round(k*dt,3)} s')
plt.xlabel('x [m]')
plt.ylabel('y [m]')
cbar_amp = plt.colorbar(amp)
cbar_fundo = plt.colorbar(fundo)
cbar_fundo.set_label(r'$-h$ [m]')
cbar_amp.set_label(r'$\eta$ [m]')
plt.show()
Exemplo 1 - Tsunami Confinada em uma Caixa
Exemplo 2.1 - Tsunami Propagando-se em Direção a Praia
Exemplo 2.2 - Tsunami Propagando-se em Direção a Praia
Referências