Modelo de Turing
EM CONSTRUÇÃO
Equação de Turing
Simulações computacionais que envolvem equações diferenciais parciais (EDP's) são usualmente modeladas através da discretização das variáveis espaciais e temporais. Algumas dessas equações descrevem comportamentos difusivos no sistema, sendo chamadas de equações de difusão. Tais equações envolvem variáveis de estado que apresentam variações temporal e espacial e coeficientes de difusão no sistema, além de outros parâmetros que influenciam na evolução dos estados. Dentro desse ramo de equações, encontra-se o Modelo de Turing, desenvolvido por Alan Turing, que utiliza como base a concentração de espécies em um sistema, avaliando sua reação, difusão e variação espacial e temporal. São muitas as aplicações do modelo, principalmente em ramos como biologia e química, envolvendo problemas com formação de padrões[1]. A seguir, descrevemos sua formulação matemática.
Sejam e as concentrações das espécies que serão analisadas. Sejam e parâmetros e e constantes. Os coeficientes de difusão são e , cada um associado a uma das concentrações[2]. O Modelo de Turing é dado pelas EDP's
Note que certa parte de cada equação depende apenas dos parâmetros e das concentrações. Podemos, portanto, utilizar funções de variáveis e para descrever o sistema[3], de modo que
Estabilidade e instabilidade no modelo de Turing
Já vimos que o modelo de Turing depende de parâmetros , de constantes e e dos coeficientes de difusão.
Afirmação: Se , temos ( como o único ponto de equilíbrio.
Demonstração: Mostraremos que é ponto de equilíbrio. De fato, ao aplicarmos esse ponto na equação do modelo de Turing, temos
para mostrar que é único, suponha que existem dois pontos de equilíbrio, a saber, e . Vemos que, como as equações diferenciais em cada ponto fixo são iguais a zero, temos
e
Consequentemente, devemos ter
.
Do mesmo modo, . Portanto, o ponto de equilíbrio é único nessas circunstâncias.
Referências
- ↑ https://en.wikipedia.org/wiki/Turing_pattern
- ↑ H. Sayama, "Introduction to the Modeling and Analysis of Complex Systems", p. 260. Open SUNY Textbooks, Geneseo, NY, 2015.
- ↑ J. Jost, "Partial Differential Equations", 3ed, p.140. Springer Science+Business Media, New York, 2013.