Grupo - Tráfego

De Física Computacional
Ir para navegação Ir para pesquisar

Integrantes: Rodrigo Zamin Ferreira (262692) e Maurício Gomes de Queiroz (264889)

Introdução

O estudo de caso do comportamento do tráfego urbano se mostra de grande utilidade nos dias atuais, onde metrópoles apresentam grandes volumes de veículos se deslocando pela cidade. Em horários de pico, por exemplo, às 18h, Porto Alegre[1] apresenta média de lentidão de 83km. Já São Paulo[2], chega a incríveis 485km.

A modelagem de tal comportamento permite um estudo das regras básicas que motoristas tentem a seguir em situação real, levando assim a um melhor entendimento da formação e desenvolvimento de congestionamentos.

Aqui é proposto um modelo simples do funcionamento normal de uma avenida utilizando autômatos celulares, primeiro com apenas uma faixa, sendo após estendido para n faixas e então, simulado um cruzamento.

Autômatos Celulares

Weimar[3] define um autômato celular em "Simulation with Cellular Automata", informalmente, como um vetor de células sendo caracterizado pelas seguintes propriedades básicas:


• A evolução se dá em passos discretos de tempo;

• Cada célula é caracterizada por um estado pertencente a um conjunto finito de estados;

• Cada célula evolui de acordo com as mesmas regras que dependem somente do estado em que a célula se encontra e de um número finito de vizinhos;

• A relação com a vizinhança é local e uniforme


Apesar de simples, autômatos celulares (AC) são capazes de simular sistemas dinâmicos complexos e são extensivamente utilizados aqui, onde cada célula representa uma posição na avenida, que pode conter um veículo ou não. Caso contenha um veículo, a célula possui um estado associado a si que representa sua velocidade; caso contrário, a célula possui um estado que indica que está vazia.

A atualização dos estados é feita de forma não-síncrona (os estados das células são atualizados um após o outro) e homogênea (as regras de atualização não dependem da posição espacial).

A mudança dos estados é feita com base em regras que se baseiam nos estados da vizinhança, tendo também algumas mudanças estocásticas, caracterizando um método de Monte Carlo.


http://transito.maplink.global/RS/porto_alegre/Estatisticas

http://transito.maplink.global/SP/sao_paulo/Estatisticas

Jörg R. Weimar: Simulation with Cellular Automata, Logos-Verlag, Berlin, 1998

https://www.ppgee.ufmg.br/defesas/113M.PDF

Regras de Aceleração

São três os casos em que um autômato do modelo descrito aqui muda de velocidade, todas elas agem com a taxa discreta de 1 u.m./passo. Além disso, é definida uma velocidade máxima que os carros podem atingir.

A velocidade é reduzida caso a distância entre um carro e o veículo que vai à sua frente seja suficientemente pequena para que haja colisão durante a atualização de posições da simulação.

De modo análogo, aumenta-se a velocidade caso a velocidade atual for menor que a máxima e seja suficientemente grande para que não haja colisão durante a atualização de posições da simulação usando a velocidade nova.

É também introduzido no modelo um fator que aleatoriamente reduz a velocidade do veículo.

Ou seja, sendo a distância entre um carro e o que está à sua frente, e a velocidade do carro,


Regra 1: Caso , então

Regra 2: Caso , então

Regra 3: Com uma probabilidade ,

Faixa Única

Faixa Dupla

N faixas

Bibliografia