Grupo3 - Ondas2

De Física Computacional
Ir para navegação Ir para pesquisar

Introdução

Equações diferenciais parciais (EDP's) hiperbólicas geralmente podem ser formuladas a partir de teoremas de conservação. Um exemplo é a equação do tipo:

,

onde é o vetor de densidades da quantidade conservada, i.e., , é o fluxo de densidade e é um termo genérico representando fontes ou sumidouros.

Uma classe especial de equações hiperbólicas são as chamadas equações de adveção, na qual a derivada temporal da quantidade conservada é proporcional à sua derivada espacial. Nesses casos, é diagonal e dada por:

,

onde é a matriz identidade.

Considerando apenas uma dimensão e com , temos a equação de adveção:

,

onde é a velocidade de propagação do pulso gerado. A equação admite uma solução analítica da forma , representando uma onda se movendo na direção .

A equação da onda em uma dimensão é uma EDP hiperbólica de segunda ordem dada por

E admite duas soluções, representadas por pulsos, e .

Assumindo que na equação da onda, nos restringimos a problemas lineares. Além disso, se escrevermos

,

então a equação da onda pode ser escrita como um sistema de três equações diferenciais de primeira ordem:

Em notação vetorial, o sistema acima pode ser reescrito na forma conservativa como: ,

onde

O Problema Físico

O Modelo de Corda Ideal

Para uma primeira abordagem da equação da onda, podemos primeiro dividir o comprimento da corda em intervalos de comprimentos iguais, dessa forma . Cada intervalo é discretizado, representado por , . Também podemos dividir o tempo em intervalos iguais e denotá-los como , .

Tendo feita a discretização das variáveis, podemos aproximar a equação da onda por diferenciação finita, utilizando derivadas centradas da seguinte forma:

onde representa o valor discretizado de .

Assim, chegamos em uma equação discretizada:

.

Sabendo que essa discretização da equação da onda pode ser verificada como sendo o método Leapfrog (ver seção do método de Leapfrog), podemos resolver a equação para para sabermos o deslocamento de uma partição da corda no momento de tempo seguinte, assim obtendo

,

onde

Um Quadro Mais Realístico - O Modelo de Corda Rígida

Para nos aproximarmos de um modelo mais real, podemos adicionar um termo à equação original da onda que corresponde ao efeito de fricção em uma corda. De acordo com [1], a equação da onda mais geral com efeito de fricção pode ser escrita como

onde é a velocidade transversal de propagação do pulso na corda, dada pela relação (sendo a tensão na corda e a densidade linear da mesma), é um parâmetro adimensional de fricção que representa a rigidez da corda e o comprimento da corda.

O parâmetro é dado por

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon = \kappa² \frac{E S}{T L^2}} ,

onde é o raio da corda, é o Módulo de Young e a área da secção da corda.

Ao discretizarmos a equação da onda em uma corda com fricção e a resolvendo para obtemos:

O fato de essa discretização depender do deslocamento da corda em posições e implica em precisarmos simular "pontos fantasmas" quando integramos os extremos das cordas. Para fazermos isso, podemos ou utilizar a aproximação ou podemos considerar esses "pontos fantasmas" como pontos presos e, portanto, sempre iguais a zero.

Os Métodos Utilizados

Foi realizada uma abordagem ao problema da corda real a partir de três métodos diferentes de integração numérica. Os três são métodos para fins de resolução de equações diferenciais parciais da forma apresentada anteriormente.

O método mais básico é chamado de FTCS (Forward-Time-Centered-Space) e consiste em duas expansões de Taylor ao redor do ponto :

Subtraindo as duas expressões, encontramos a expressão

,

A qual podemos substituir na equação da onda, juntamente com a discretização da derivada parcial temporal. Temos então que, para um sistema linear de equações hiperbólicas:

Visto que essa última notação é mais genérica, ela será utilizada para a explicação dos métodos posteriores.

O Método de Lax-Friedrichs

O método de Lax-Friedrichs consiste em substituir o termo com sua respectiva média espacial, i.e., . Logo, temos a seguinte equação de recorrência:

O Método de Leapfrog

Tanto o método FTCS quanto o método de Lax-Friedrichs são métodos de primeira ordem para a derivada temporal. Nessas circunstâncias, deve ser significantemente menor do que , muito abaixo do limite imposto pela condição de Courant (ver seção estabilidade dos métodos).

Uma nova expressão para a derivada temporal, com precisão de segunda ordem é dada por

Substituindo a nova expressão acima no método de FTCS discutido anteriormente, encontramos o método de Leapfrog:

Como o método de Leapfrog foi o mais aplicado na resolução do problema em questão, é interessante um aprofundamento maior do método. Podemos adaptar o método de Leapfrog para o sistema de equações definido para a equação da onda ao fazermos

Com a representação Leapfrog das equações do sistema de três equações, temos:


Com essas duas equações, podemos fazer uma integração utilizando o método de Euler para obter , ou seja, o deslocamento de um determinado ponto no próximo instante de tempo:

Contudo, podemos fazer uma simples substituição das equações e nas equações e e, assim, obtemos que a representação de Leapfrog da equação da onda é dada pela discretização de segunda ordem da própria equação da onda, com . Isso nos dá uma solução de "um passo", onde só precisamos efetuar o cálculo da equação discretizada.

O Método de Lax-Wendroff

O método de Lax-Wendroff é a extensão do método de Lax-Friedrichs de segunda ordem. Calculamos o vetor a partir de um passo médio de Lax-Friedrichs:

,

,

E encontramos os fluxos a partir dos valores de

Logo, com um meio passo de Leapfrog, temos a expressão final do método:

Análise e Discussão dos Resultados

Escolhemos para simular quatro diferentes cordas: as cordas C2, C4 e C7 de um piano cujos dados foram obtidos no artigo sobre cordas do Chaigne \cite{artigo} e uma corda com dados pré-estabelecidos encontrados no livro de física computacional do Giordano \cite{giordano}. Os dados das cordas C2, C4 e C7 estão na tabela abaixo.

C2 C4 C7
Comprimento () 1.90 0.62 0.09
Massa() 35 3.93 0.467
Tensão () 750 670 750
Divisões 100 50 16
Amostragem de sinal 16 32 96
Parâmetro de fricção

Desses dados, temos que a densidade linear de massa das cordas é dada por onde é a massa e o comprimento da corda, onde é a tensão na corda, e Para a corda com dados pré-estabelecidos, utilizamos uma corda com 2 metros de comprimento, com velocidade de propagação da onda sendo 300, de 0.01, e parâmetro de fricção de . Supondo a corda inicialmente em repouso, temos que em Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle t = 0<\math> a corda recebe em seu centro o equivalente à batida do martelo do piano. Supomos que esse estímulo possuía o formato aproximado de uma Gaussiana com amplitude de <math>\frac{1}{4}} do comprimento da corda. Então, com o estado inicial sendo um pulso com o formato de um pacote gaussianico e os dados da tabela, simulamos a propagação de ondas em cada uma das cordas.

Utilizando o método de Leapfrog, foi realizada uma primeira simulação para uma onda ideal em uma corda:

Ideal.gif

Corda C2:

C2.gif

Corda C4:

C4.gif

Corda C7:

C7.gif

Análise de Erro e Estabilidade dos Métodos

Estabilidade do método Leapfrog

Pela estabilidade de Von Neumann, podemos escrever que

Para , a equação da discretização da onda pode ser reescrita como

Essa escolha com

nos dá a solução exata sem dispersão numérica. Contudo, é válido somente no caso de uma corda ideal. É conveniente escrever a condição acima em termos da amostragem de sinal e a frequência fundamental da corda , o que nos leva a

O teorema de Nyquist diz que a frequência superior no espectro deve ser menor do que para evitar serrilhamento e para garantir uma reconstrução única e contínua. Logo, no caso ideal quando as autofrequências da corda são igualmente espaçadas (), a condição de Nyquist indica que o número máximo de frequências no espectro é . Isso significa que essa condição pode ser usada para selecionar o número apropriado de pontos espaciais para a corda. Entretanto, como é um inteiro, apenas valores discretos da frequência natural podem ser obtidos sem erros de trucamento, ou seja, usando . Como series discretas não costumam ser utilizadas, precisamos aceitar pequenos erros de truncamento para ajustar , ou seja, utilizando . No caso de uma onda com fricção, temos que é um valor de boa estabilidade.

Conclusões (?)

vsf caetano vsf doria vsf os dois vai tu anderson - dória aqui (mentira)

por favor usem U maiusculo com os indices i,n e não usem y, usem u minusculo

tem que aprender a fazer referência pras bib e colocar as bib aqui já dei up nos gif

flavia tu é muito linda flw vlw atri

Referências Bibliográficas