Equação de Águas Rasas
Em construção Grupo: Gabriel Schmökel, Julia Remus e Pedro Inocêncio Rodrigues Terra
1. Introdução
Tsunami é um fenômeno da natureza caracterizado por uma sucessão de ondas marinhas, que devido ao seu grande volume e alta velocidade, podem se tornar catastróficas ao atingir a costa. Sismos, erupções vulcânicas, deslizamentos de terra, impactos e outros movimentos submarinos são a causa para a formação deste evento, sendo a grande maioria provocado pelos movimentos das placas tectônicas.
Formação de um Tsunami
Vamos analisar a sequência de passos da formação de uma Tsunami formada a partir de um abalo sísmico:
I. A convergência das placas tectônicas, devido as correntes de convecção, faz com que existam forças de tensão entre as placas.
IMAGEM
A tensão entre as placas eventualmente ultrapassa o limite máximo, o que provoca o deslizamento brusco de uma das placas sobre a outra, gerando um grande deslocamento de volume de água na vertical. Como a tsunami ocorre em grandes profundidades, ela pode passar despercebida para um barco que navega nas proximidades, uma vez que amplitude da onda é menor.
IMAGEM
II. A onda gerada se propaga ao longo de todas as direções do plano da água.
IMAGEM
III. A medida que a onda se aproxima da superfície ela diminui sua velocidade e aumenta sua amplitude
IMAGEM
Temos o interesse de descrever fisicamente a propagação da Tsunami de acordo com a topografia da água e do mar, por essa razão não iremos estudar o efeito físico que causou o deslocamento do volume de água.
Forma Conservativa
A partir das equações de conservação de momento e de massa, pode ser obtida as equações de águas rasas na forma conservativa. A forma conservativa da equação de águas rasas desconsidera a viscosidade do fluido e as tensões de cisalhamento aplicadas nele.
O desenvolvimento completo das equações está disponível na [1]. A conservação de massa é dada por:
Onde Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{u}} é a velocidade na direção Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} , Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{v}} é a velocidade na direção Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle y} e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{w}} é a velocidade na direção Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle z} .
Para a conservação do momento deve ser levado em conta três premissas:
- O comprimento da onda é muito maior que as contribuições na direção Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{z}}
- A aceleração na direção da velocidade Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{w}} é zero
- O líquido é não viscoso
- As velocidades Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{u}} e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{v}} não variam em Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{z}}
Ao aproximar por diferenças finitas obtemos o sistema de equações discretizadas a seguir.
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dfrac{h^{t + \Delta t}_{i, j} - h^{t}_{i, j}}{\Delta t} + \left [ \dfrac{(hu)^t_ {i+1,j} - (hu)^t_{i-1, j}}{2 \Delta x} \right ] + \left [ \dfrac{(hv)^t_ {i,j+1} - (hv)^t_{i, j-1}}{2 \Delta y} \right ] = 0}
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dfrac{hu)^{t + \Delta t}_{i, j} - (hu)^{t}_{i, j}}{\Delta t} + \left [ \dfrac{(hu^2 + \cfrac{1}{2}gh^2)^t_{i+1, j} - (hu^2 + \cfrac{1}{2}gh^2)^t_{i-1, j}}{2 \Delta x} \right ] + \left [ \dfrac{(huv)^t_{i, j+1} - (huv)^t_{i, j-1}}{2 \Delta y} \right ] = -g h^{t}_{i, j} b_{x. i, j}}
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dfrac{(hv)^{t + \Delta t}_{i, j} - (hv)^{t}_{i, j}}{\Delta t} + \left [ \dfrac{(huv)^t_{i+1, j} - (huv)^t_{i-1, j}}{2 \Delta x} \right ] + \left [ \dfrac{(hv^2 + 1/2 gh^2)^t_{i, j+1} - (hv^2 + 1/2 gh^2)^t_{i, j-1}}{2 \Delta y} \right ] = -g h^{t}_{i, j} b_{y. i, j} }
Resolvendo pelo método de FTCS (para frente no tempo) e ajustando aos limites de estabilidade, temos como resultado:
.... aqui gráfico ....
Para esse desenvolvimento encontramos algumas dificuldades para resolução do sistema de equações.