Modelo de Keller-Segel para relação população-economia

De Física Computacional
Ir para navegação Ir para pesquisar

Grupo: Leonardo Barcelos, Luana Bianchi e Rubens Borrasca

O objetivo deste trabalho é implementar o modelo de Keller-Segel, que originalmente descreve chemotaxis: movimento de organismo em direção ou contra algum sinal químico, para um sistema englobando população e atividade econômica. O método computacional utilizado para resolver o problema e implementar o modelo foi o FTCS (Forward Time Centered Space) para uma dimensão e FTCS utilizando o algoritmo de Gauss-Seidel para duas dimensões.

Modelo de Keller-Segel

Proposto por Evelyn Fox Keller, física norte-americana, e Lee Aaron Segel, matemático também norte-americano, o modelo de Keller-Segel foi historicamente utilizado para descrever o movimento de bactérias. Introduzido primeiramente em 1970 para descrever a agregação de uma espécie de bolor limoso (ou slime mold) ameboide, Dictyostelium discoideum, o modelo se tornou um dos mais usados nos estudos biológicos-matemáticos. As células deste slime mold se comportam como amoebas individuais, e se alimentam de bactérias, mas quando a quantidade de comida fica pequena, elas se difundem pelo espaço e então se agregam em formato mais alongado, como o formato das lesmas, para uma migração de longa distância. Keller e Segel desenvolveram um modelo matemático para o processo de agregação, em que a chemotaxis tem papel crítico na auto-ormanização das células.

Baseados no que já era conhecido sobre esses organismos, Keller e Segel utilizaram as seguintes premissas:

  • As células estão inicialmente distribuídas sobre o espaço de maneira mais ou menos homogênea, com algumas flutuações aleatótias;
  • As células apresentam chemotaxis em direção ao sinal químico denominado cAMP (cyclic adenosine monophosphate);
  • As células produzem moléculas cAMP;
  • As células e as moléculas cAMP difundem pelo espaço;
  • As células não morrem e não se dividem

De forma simplificada, ocultando alguns detalhes biológicos mais complicados a equação de Keller-Segel é a seguinte:

em que e são respectivamente as variáveis de estado para a concentração de células e a concentração de cMAP. é o parâmetro de mobilidade das células, é o parâmetro da chemotaxis celular, é a constante de difusão das moléculas cAMP, é a taxa de secreção de cMAP pelas células, e é a taxa de decaimento das moléculas cMAP.


Aplicação população-economia

De forma parecida com as premissas de Keller e Segel, os seguintes pontos são assumidos para modelar a relação entre a população e a atividade econômica:

  • A população não cresce e não decresce ao longo do tempo;
  • A economia é ativada por existir mais pessoas em uma região;
  • Sem pessoas a atividade econômica diminui;
  • População e atividade econômica difundem gradualmente;
  • As pessoas são atraídas por regiões com maior atividade econômica

Traduzindo estes pontos em equações matemáticas, se obtêm as seguintes equações:

em que representa a população e a atividade econômica. é a constante que determina a taxa de produção de atividade econômica per capita, é a constante da taxa de decaimento da atividade econômica, e são as constantes de difusão da população e da economia respectivamente, e é a constante que afeta a velocidade média do movimento da população.

Comparando o sistema obtido com o problema original de Keller-Segel, percebe-se que se trocarmos células por pessoas e cMAP por atividade econômica os problemas ficam iguais, e até se poderia denominar como moneytaxis a migração das pessoas em direção a atividade econômica, como a chemotaxis descreve o movimento das células em direção ao cAMP.

Métodos Computacionais

FTCS

FTCS Gauss-Seidel

Resultados

1D

Com o intuito de testar melhor a equação e suas consequências, os resultados foram divididos em várias simulações diferentes.

População e Dinheiro em pontos separados

Para esta simulação, considera-se que no tempo 0, toda a população está concentrada em 1 ponto, enquanto todo o dinheiro está em um outro ponto distante.

Os parâmetros utilizados foram:

Resultados da simulação para o caso de população e dinheiro em pontos separads e distantes na malha

Na figura acima, consegue-se observar o resultado da construção do sistema desta maneira.

Com toda a população concentrada em 1 ponto (), a atividade econômica cresce consideravelmente neste intervalo ao longo do tempo. Em contrapartida, o local que continha todo o dinheiro no começo da simulação (), em pouco tempo tem a sua renda líquida migrada para onde tem uma densidade populacional maior. Essa tendência indica, portanto, que o sistema é construído de tal forma que a atração da população por regiões de alta renda líquida é menor que a atração do sistema monetário de seguir para pontos de alta densidade populacional.

Além disso, outra observação interessante é que nota-se para uma tendência inerente da densidade populacional em seguir uma distribuição de shape gaussiano sob a malha. Considerando que a equação que define o movimento populacional com o tempo contém um termo difusivo, e que a solução para uma difusão simples em 1 dimensão também assume um shape gaussiano, este resultado faz sentido. Mas uma coisa interessante é que, depois de se desfazer de seu formato inicial, o total de dinheiro sob a malha tende a seguir a distribuição populacional, porém com um desvio padrão maior (maior abertura na Gaussiana). Essa observação indica que, para centros econômicos (regiões com alto ) a tendência é que suas periferias também possuam valores altos de renda, apesar da população consideravelmente menor. Além disso, para regiões fora do contorno de centros econômicos (distância maior do que 3 vezes o desvio padrão da gaussiana) a atividade econômica é basicamente nula, assim como a densidade populacional. Este último fato descreve de forma genérica e simplista o comportamento atual observado em metrópoles nos dias de hoje: uma cidade grande possui alto número de habitantes, alta renda, seus contornos também apresentam atividade econômica forte (porém menor que o centro), mas para um raio suficientemente grande, tanto dinheiro quanto população caem exponencialmente.

2D

Discussão

Programas

Referências

Sayama

Scherrer

[1]