Integração Numérica

De Física Computacional
Revisão de 07h20min de 19 de outubro de 2011 por Caca (discussão | contribs)
Ir para navegação Ir para pesquisar
A integração numérica consiste em achar a aproximação numérica para o valor de Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle S}

Integração numérica é um termo amplo que abrange até a integração de equações diferenciais como é discutido em Métodos Computacionais B. Aqui nos referimos exclusivamente ao cálculo numérico da integral definida:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle S = \int_{a}^{b} f(x) dx}

O termo definida, quer dizer que a integral se faz entre limites definidos, no caso a e b.

O interesse de fazer esse cálculo numericamente se deve a:

  1. existência de funções contínuas sem primitiva, o que inviabiliza a conta analítica.
  2. funções descontinuas ou definidas por trechos
  3. funções (ou tabelas) provenientes de experimentos
  4. funções continuas e com primitiva de representação simbólica, porem de difícil avaliação na prática (mais difícil que avaliar a própria função)

Definição

Revisemos o conceito de integral do cálculo: A integral definida de uma função f(x) no intervalo [a, b] se define como:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle S = \int_a^b f(x)\, dx = \lim_{N\to\infty} \sum_{i=0}^{N} f(x_i) \Delta x }

A integral de f(x) pode ser entendida como a soma de pequenos retângulos de base dx e altura f(x), onde o produto f(x) dx é a área deste retângulo.
A soma de todas estas pequenas áreas, ou áreas infinitesimais, fornece a área total abaixo da curva.
Mais precisamente podemos dizer que a integral acima é o valor limite da soma:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{i=0}^{N} f(x_i) \Delta x. }

onde:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta x = \frac{b-a}{N}}

é o comprimento dos pequenos intervalos nos quais dividimos o intervalo (b-a), Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x_i)} é o valor da função em algum ponto deste intervalo.
Quando Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle N \to \infty} o valor da soma acima é igual a área abaixo da curva.

A integral também é conhecida como antiderivada:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int f(x)dx = F(x) \Leftrightarrow \frac{dF(x)}{dx}= f(x)}

Relembremos porque:

Teorema Fundamental do Cálculo

Se resolvermos a integral acima entre os limites a e b, o resultado pode ser escrito como dependendo só dos extremos:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle S = \int_{a}^{b} f(x) dx = F(b) - F(a) }

Vamos ver agora como se isso for válido, então F(x) é a primitiva procurada.

Calculando a integral entre Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle x + \Delta x} :

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_{x}^{x+\Delta x} f(x') dx' = F(x + \Delta x) - F(x) }

Pela definição da integral entre limites definidos podemos escrevê-la como:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_{x}^{x+\Delta x} f(x') dx' = f(x'') \Delta x = F(x + \Delta x) - F(x) }

onde Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle x''} é um valor de Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} entre os extremos do intervalo.

Passando o Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta x} para a direita e tomando o limite quando ele vai para zero:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{\Delta x \to 0 } f(x'') = \lim_{\Delta x \to 0 } \frac{ F(x + \Delta x) - F(x) }{ \Delta x } \Rightarrow f(x) = \frac{d}{dx} F(x) }

Demonstramos que a derivada de F(x) resulta ser a função f(x) que queremos integrar. Em outras palavras, o Teorema fundamental do Cálculo diz que resolver uma integral se resume a achar a primitiva, ou seja uma função cuja derivada seja o integrando.

O problema prático é que não todas as funções tem primitiva.. Vejamos então.

Cálculo Numérico

Ilustração da regra do retângulo.
Ilustração da regra do trapézio.
Ilustração da regra de Simpson.

O cálculo numérico de uma integral definida se baseia na própria definição acima. Com a diferença que N é finito. Obviamente quanto maior, melhor.

-Temos que pelos retângulos definidos pelo extremo esquerdo de cada subintervalo:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_a^b f(x)\, dx \approx S_e = \sum_{i=0}^{N-1} f(x_i) \Delta x }
-E pelos retângulos definidos pelo extremo direito de cada subintervalo:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_a^b f(x)\, dx \approx S_d = \sum_{i=1}^{N} f(x_i) \Delta x }
Regra do Trapézio:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_a^b f(x)dx \approx S_t = \sum_{i=0}^{N-1} \frac{f(x_i)+f(x_i+\Delta x)}{2}\Delta x}

onde:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_i = a + i \Delta x,\;\; \Delta x = \frac{b-a}{N}}

Esta última pode ser reescrita como:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\frac{f(a)+f(b)}{2} + \sum_{i=1}^{N-1} f(x_i)\right)\Delta x}

Também pode se verificar que a integral calculada com os trapézios é a média das integrais calculadas com retângulos:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle S_t = (S_e + S_d)/2}
Regra de Simpson:

Notemos que o método do trapézio é baseado na ideia de passar uma reta por 2 pontos e aproximar a área da função f(x) pela área sob a curva definida pelo trapézio.

A regra de Simpson é uma extensão disto: a ideia é passar uma parábola por três pontos consecutivos e calcular a área definida por ela. Se tivermos apenas 3 pontos, a integral da parábola que passa entre Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_{1} , x_{3}} é dada por:


Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle S= \int_{x_0}^{x_2} f(x) \, dx \approx \frac{x_2-x_0}{6}\left[f(x_0) + 4f\left(\frac{x_0+x_2}{2}\right)+f(x_2)\right]}


No entanto, para integrarmos sobre toda o intervalo Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left[ x_{1} ; x_{n}\right]} com boa precisão, é necessário dividi-lo em N intervalos, com N grande (e par!). Assim, é preciso traçar uma parábola a cada três pontos consecutivo e a expressão final da fórmula de Simpson é então a soma da área sob todas as parábolas do intervalo Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left[ x_{0} ; x_{n}\right]}  :


Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle S= \int_{x_0}^{x_n} f(x)dx \simeq \frac{h}{3}\left[f(x_0)+4f(x_1)+2f(x_2)+4f(x_3)+\ldots+4f(x_{n-1})+f(x_n)\right]} ,

onde Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle h = (x_{n} - x_{0} )/N } .


A dedução da regra de Simpson pode ser encontrada por exemplo em [1].

Programação

A seguir um trecho do programa para cálculo da integral da função f(x) (external function f(x))
entre a e b com N pontos, usando o método dos retângulos pela esquerda:

...
Read*, a, b, N
dx = (b-a)/N;  S=0

Do i = 0, N-1
   x = a + i*dx
   S = S + f(x)
EndDo
Print*, "Integral S=", S*dx
...

Os outros métodos se programam de maneira similar mudando limites (índice do laço)
e/ou tratando de forma diferente os valores das pontas.

Erro associado ao método numérico

O método de integração numérico não retorna o valor exato de uma função, visto que não podemos ter no computador Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle N\to\infty} . O erro aqui discutido estará vinculado ao número de divisões Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle N} realizada na função Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)} dentro do intervalo que se quer saber o valor da integral. Assim, o erro é definido como

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle erro=\frac{Int(N)-Int(N-1)}{Int(N)}} ,

onde Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle Int(N)} é o valor retornado pelo método numérico utilizado utilizando Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle N} divisões e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle Int(N-1)} utilizando Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle N-1} divisões. Note que um teste simples para verificar quando a resposta está convergindo é aumentar Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle N} e calcular o erro a cada incremento no seu valor.