Grupo3 - Ondas2: mudanças entre as edições
Linha 247: | Linha 247: | ||
Desses dados, temos que a densidade linear de massa das cordas é dada por | Desses dados, temos que a densidade linear de massa das cordas é dada por | ||
<math>\rho = \frac{M}{l},</math> | <math>\rho = \frac{M}{l},</math> | ||
onde <math>M</math> é a massa e <math>l</math> o comprimento da corda, | onde <math>M</math> é a massa e <math>l</math> o comprimento da corda, | ||
<math>v = \sqrt{\frac{T}{\rho}},</math> | <math>v = \sqrt{\frac{T}{\rho}},</math> | ||
onde <math>T</math> é a tensão na corda, | |||
onde <math>T</math> é a tensão na corda, | |||
<math>\Delta x = \frac{l}{K},</math> | <math>\Delta x = \frac{l}{K},</math> | ||
<math>\Delta t = \frac{1}{f_e},</math> | <math>\Delta t = \frac{1}{f_e},</math> | ||
e | e | ||
<math>r = v\frac{\Delta t}{\Delta x}.</math> | <math>r = v\frac{\Delta t}{\Delta x}.</math> | ||
Para a corda com dados pré-estabelecidos, utilizamos uma corda com 2 metros de comprimento, com velocidade de propagação da onda sendo 300<math>m/s</math>, <math>\Delta x</math> de 0.01<math>m</math>, <math>\Delta t = \frac{\Delta x }{4v}</math> e parâmetro de fricção de <math>7.5\times10^{-6}</math>. | Para a corda com dados pré-estabelecidos, utilizamos uma corda com 2 metros de comprimento, com velocidade de propagação da onda sendo 300<math>m/s</math>, <math>\Delta x</math> de 0.01<math>m</math>, <math>\Delta t = \frac{\Delta x }{4v}</math> e parâmetro de fricção de <math>7.5\times10^{-6}</math>. | ||
Supondo a corda inicialmente em repouso, temos que em <math>t = 0</math> a corda recebe em seu centro o equivalente à batida do martelo do piano. Supomos que esse estímulo possuía o formato aproximado de uma Gaussiana com amplitude de <math>\frac{1}{4}</math> do comprimento da corda. Então, com o estado inicial sendo um pulso com o formato de um pacote gaussianico e os dados da tabela, simulamos a propagação de ondas em cada uma das cordas. | Supondo a corda inicialmente em repouso, temos que em <math>t = 0</math> a corda recebe em seu centro o equivalente à batida do martelo do piano. Supomos que esse estímulo possuía o formato aproximado de uma Gaussiana com amplitude de <math>\frac{1}{4}</math> do comprimento da corda. Então, com o estado inicial sendo um pulso com o formato de um pacote gaussianico e os dados da tabela, simulamos a propagação de ondas em cada uma das cordas. |
Edição das 19h26min de 25 de outubro de 2017
Introdução
Equações diferenciais parciais (EDP's) hiperbólicas geralmente podem ser formuladas a partir de teoremas de conservação. Um exemplo é a equação do tipo:
,
onde é o vetor de densidades da quantidade conservada, i.e., , é o fluxo de densidade e é um termo genérico representando fontes ou sumidouros.
Uma classe especial de equações hiperbólicas são as chamadas equações de adveção, na qual a derivada temporal da quantidade conservada é proporcional à sua derivada espacial. Nesses casos, é diagonal e dada por:
,
onde é a matriz identidade.
Considerando apenas uma dimensão e com , temos a equação de adveção:
,
onde é a velocidade de propagação do pulso gerado. A equação admite uma solução analítica da forma , representando uma onda se movendo na direção .
A equação da onda em uma dimensão é uma EDP hiperbólica de segunda ordem dada por
E admite duas soluções, representadas por pulsos, e .
Assumindo que na equação da onda, nos restringimos a problemas lineares. Além disso, se escrevermos
então a equação da onda pode ser escrita como um sistema de três equações diferenciais de primeira ordem:
Em notação vetorial, o sistema acima pode ser reescrito na forma conservativa como: ,
onde
Condição CFL
Uma condição necessária mas nem sempre suficiente para a convergência de equações diferenciais parciais resolvidas a partir de métodos de diferença, formulada por Courant, Friedrichs e Lewy em 1928 (aprender a referenciar), conhecida como condição CFL, é formulada a partir do termo de “domínio de dependência”.
Considerando, por exemplo, a equação da advecção (citar a equação da advecção) em uma aproximação a partir de métodos de diferença em sua forma explícita , diz-se que o valor de depende dos valores anteriores de e , e esses dois pontos dependem, novamente, de outros dois pontos em tempos anteriores. Todos esses pontos dependentes formam o domínio de dependência do valor , representado abaixo (botar figura do domínio de dependência).
A condição CFL enuncia que a condição mínima para que haja estabilidade em métodos de diferenças o domínio de dependência da equação diferencia parcial, dado por sua equação característica, deve estar situado dentro do domínio de dependência do esquema numérico.
A partir dessa condição, define-se o número CFL como
onde é um passo na malha temporal e é um passo na malha espacial. Para casos unidimensionais, como o que será tratado aqui, a condição CFL é satisfeita se r
Um uso da condição CFL é determinar o tamanho do passo temporal, sabendo-se e :
onde o fator .
O número CFL pode ser entendido como um fluxo numérico advectivo adimensionalisado pelas malhas espacial e temporal do problema. De um ponto de vista matemático, ele garante que o domínio numérico de dependência é sempre maior que o domínio físico. De um ponto de vista físico, é garantido que a velocidade de propagação de qualquer perturbação, como uma onda, seja menor ou ao menos igual que a velocidade de propagação numérica, fazendo com que a distância propagada pela perturbação não seja maior do que a divisão da malha espacial:
O Problema Físico
O Modelo de Corda Ideal
Para uma primeira abordagem da equação da onda, podemos primeiro dividir o comprimento da corda em intervalos de comprimentos iguais, dessa forma . Cada intervalo é discretizado, representado por , . Também podemos dividir o tempo em intervalos iguais e denotá-los como , .
Tendo feita a discretização das variáveis, podemos aproximar a equação da onda por diferenciação finita, utilizando derivadas centradas da seguinte forma:
onde representa o valor discretizado de .
Assim, chegamos em uma equação discretizada:
.
Sabendo que essa discretização da equação da onda pode ser verificada como sendo o método Leapfrog (ver seção do método de Leapfrog), podemos resolver a equação para para sabermos o deslocamento de uma partição da corda no momento de tempo seguinte, assim obtendo
,
onde
Um Quadro Mais Realístico - O Modelo de Corda Rígida
Para nos aproximarmos de um modelo mais real, podemos adicionar um termo à equação original da onda que corresponde ao efeito de fricção em uma corda. De acordo com [1], a equação da onda mais geral com efeito de fricção pode ser escrita como
onde é a velocidade transversal de propagação do pulso na corda, dada pela relação (sendo a tensão na corda e a densidade linear da mesma), é um parâmetro adimensional de fricção que representa a rigidez da corda e o comprimento da corda.
O parâmetro é dado por
Falhou ao verificar gramática (erro de sintaxe): {\displaystyle \epsilon = \kappa² \frac{E S}{T L^2}} ,
onde é o raio da corda, é o Módulo de Young e a área da secção da corda.
Discretizamos a equação da seguinte maneira:
e resolvemos para , obtendo:
O fato de essa discretização depender do deslocamento da corda em posições e implica em precisarmos simular "pontos fantasmas" quando integramos os extremos das cordas. Para fazermos isso, podemos ou utilizar a aproximação ou podemos considerar esses "pontos fantasmas" como pontos presos e, portanto, sempre iguais a zero.
Os Métodos Utilizados
Foi realizada uma abordagem ao problema da corda real a partir de três métodos diferentes de integração numérica. Os três são métodos para fins de resolução de equações diferenciais parciais da forma apresentada anteriormente.
O método mais básico é chamado de FTCS (Forward-Time-Centered-Space) e consiste em duas expansões de Taylor ao redor do ponto :
Subtraindo as duas expressões, encontramos a expressão
,
A qual podemos substituir na equação da onda, juntamente com a discretização da derivada parcial temporal. Temos então que, para um sistema linear de equações hiperbólicas:
Visto que essa última notação é mais genérica, ela será utilizada para a explicação dos métodos posteriores.
O Método de Lax-Friedrichs
O método de Lax-Friedrichs consiste em substituir o termo com sua respectiva média espacial, i.e., . Logo, temos a seguinte equação de recorrência:
O Método de Leapfrog
Tanto o método FTCS quanto o método de Lax-Friedrichs são métodos de primeira ordem para a derivada temporal. Nessas circunstâncias, deve ser significantemente menor do que , muito abaixo do limite imposto pela condição de Courant.
Uma nova expressão para a derivada temporal, com precisão de segunda ordem é dada por
Substituindo a nova expressão acima no método de FTCS discutido anteriormente, encontramos o método de Leapfrog:
Como o método de Leapfrog foi o mais aplicado na resolução do problema em questão, é interessante um aprofundamento maior do método. Podemos adaptar o método de Leapfrog para o sistema de equações definido para a equação da onda ao fazermos
Com a representação Leapfrog das equações do sistema de três equações, temos:
Com essas duas equações, podemos fazer uma integração utilizando o método de Euler para obter , ou seja, o deslocamento de um determinado ponto no próximo instante de tempo:
Contudo, podemos fazer uma simples substituição das equações e nas equações e e, assim, obtemos que a representação de Leapfrog da equação da onda é dada pela discretização de segunda ordem da própria equação da onda, com . Isso nos dá uma solução de "um passo", onde só precisamos efetuar o cálculo da equação discretizada.
O Método de Lax-Wendroff
O método de Lax-Wendroff é a extensão do método de Lax-Friedrichs de segunda ordem. Calculamos o vetor a partir de um passo médio de Lax-Friedrichs:
,
,
E encontramos os fluxos a partir dos valores de
Logo, com um meio passo de Leapfrog, temos a expressão final do método:
Análise e Discussão dos Resultados
Escolhemos para simular quatro diferentes cordas: as cordas C2, C4 e C7 de um piano cujos dados foram obtidos no artigo sobre cordas do Chaigne [3] e uma corda com dados pré-estabelecidos encontrados no livro de física computacional do Giordano [1]. Os dados das cordas C2, C4 e C7 estão na tabela abaixo.
C2 | C4 | C7 | |
---|---|---|---|
Comprimento () | |||
Massa() | |||
Tensão () | |||
Divisões | |||
Amostragem de sinal | |||
Parâmetro de fricção |
Desses dados, temos que a densidade linear de massa das cordas é dada por
onde é a massa e o comprimento da corda,
onde é a tensão na corda,
e
Para a corda com dados pré-estabelecidos, utilizamos uma corda com 2 metros de comprimento, com velocidade de propagação da onda sendo 300, de 0.01, e parâmetro de fricção de . Supondo a corda inicialmente em repouso, temos que em a corda recebe em seu centro o equivalente à batida do martelo do piano. Supomos que esse estímulo possuía o formato aproximado de uma Gaussiana com amplitude de do comprimento da corda. Então, com o estado inicial sendo um pulso com o formato de um pacote gaussianico e os dados da tabela, simulamos a propagação de ondas em cada uma das cordas.
Utilizando o método de Leapfrog, foi realizada uma primeira simulação para uma onda ideal em uma corda:
Corda C2:
Corda C4:
Corda C7:
Corda com as definições do Giordano:
Análise de Erro e Estabilidade dos Métodos
Estabilidade do método Leapfrog
Pela estabilidade de Von Neumann, podemos escrever que
Para , a equação da discretização da onda pode ser reescrita como
Essa escolha com
nos dá a solução exata sem dispersão numérica. Contudo, é válido somente no caso de uma corda ideal. É conveniente escrever a condição acima em termos da amostragem de sinal e a frequência fundamental da corda , o que nos leva a
O teorema de Nyquist diz que a frequência superior no espectro deve ser menor do que para evitar serrilhamento e para garantir uma reconstrução única e contínua. Logo, no caso ideal quando as autofrequências da corda são igualmente espaçadas (), a condição de Nyquist indica que o número máximo de frequências no espectro é . Isso significa que essa condição pode ser usada para selecionar o número apropriado de pontos espaciais para a corda. Entretanto, como é um inteiro, apenas valores discretos da frequência natural podem ser obtidos sem erros de trucamento, ou seja, usando . Como series discretas não costumam ser utilizadas, precisamos aceitar pequenos erros de truncamento para ajustar , ou seja, utilizando . No caso de uma onda com fricção, temos que é um valor de boa estabilidade.
Conclusões (?)
Referências Bibliográficas
- ↑ Erro de citação: Marca
<ref>
inválida; não foi fornecido texto para as refs chamadasgiordano