Grupo3 - Ondas2: mudanças entre as edições

De Física Computacional
Ir para navegação Ir para pesquisar
Linha 60: Linha 60:
Assim, chegamos em uma equação discretizada:
Assim, chegamos em uma equação discretizada:


<math>\frac{u(i,n+1)-2u(i,n)+u(i,n-1)}{(\Delta t)^2} = v^2 \frac{u(i+1,n)-2u(i,n)+u(i-1,n)}{(\Delta x)^2}</math>.  
<math>\frac{u_i^{n+1}-2u_i^n+u_i^{n-1}}{(\Delta t)^2} = v^2 \frac{u_{i+1}^n-2u_i^n+u_{i-1}^n}{(\Delta x)^2}</math>.  


Sabendo que essa discretização da equação da onda pode ser verificada como sendo o método Leapfrog (ver seção do método de Leapfrog), podemos resolver a equação para <math>u_i^{n+1}</math> para sabermos o deslocamento de uma partição da corda no momento de tempo seguinte, assim obtendo
Sabendo que essa discretização da equação da onda pode ser verificada como sendo o método Leapfrog (ver seção do método de Leapfrog), podemos resolver a equação para <math>u_i^{n+1}</math> para sabermos o deslocamento de uma partição da corda no momento de tempo seguinte, assim obtendo

Edição das 22h36min de 24 de outubro de 2017

Introdução

Equações diferenciais parciais (EDP's) hiperbólicas geralmente podem ser formuladas a partir de teoremas de conservação. Um exemplo é a equação do tipo:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial \vec{U}}{\partial t} + \nabla \cdot \vec{F}(U) = \vec{S}(U)} ,

onde Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{U}} é o vetor de densidades da quantidade conservada, i.e., , Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{F}} é o fluxo de densidade e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{S}} é um termo genérico representando fontes ou sumidouros.

Uma classe especial de equações hiperbólicas são as chamadas equações de adveção, na qual a derivada temporal da quantidade conservada Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{U}(\vec{x},t)} é proporcional à sua derivada espacial. Nesses casos, Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{F}(U)} é diagonal e dada por:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{F}(U) = v \vec{I} \cdot \vec{U}} ,

onde Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{I}} é a matriz identidade.

Considerando apenas uma dimensão e com Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{U} \equiv u} , temos a equação de adveção:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial u}{\partial t} + v \frac{\partial u}{\partial x} = 0} ,

onde Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} é a velocidade de propagação do pulso gerado. A equação admite uma solução analítica da forma Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle u = f(x - vt)} , representando uma onda se movendo na direção Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} .

A equação da onda em uma dimensão é uma EDP hiperbólica de segunda ordem dada por

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial^2 u}{\partial t^2} = v^2 \frac{\partial^2 u}{\partial x^2}. }

E admite duas soluções, representadas por pulsos, Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x + vt)} e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x - vt)} .

Assumindo que Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle v \neq v(x)} na equação da onda, nos restringimos a problemas lineares. Além disso, se escrevermos

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle k = v \frac{\partial u}{\partial x} } , Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle s = \frac{\partial u}{\partial t}, }

então a equação da onda pode ser escrita como um sistema de três equações diferenciais de primeira ordem:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{cases}\frac{\partial k}{\partial t} = v\frac{\partial s}{\partial x} \\ \frac{\partial s}{\partial t} = v\frac{\partial k}{\partial x} \\ \frac{\partial u}{\partial t} = s \end{cases} }

Em notação vetorial, o sistema acima pode ser reescrito na forma conservativa como: Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial U}{\partial t}+ \frac{\partial F(U)}{\partial x} = 0 } ,

onde Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle U = \begin{pmatrix}k\\s\end{pmatrix},\quad \textrm{e}\quad F(U) =\begin{pmatrix}0 & -v\\-v & 0\end{pmatrix}}

O Problema Físico

O Modelo de Corda Ideal

Para uma primeira abordagem da equação da onda, podemos primeiro dividir o comprimento Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle L} da corda em Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle K} intervalos de comprimentos iguais, dessa forma Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta x = \frac{L}{K}} . Cada intervalo é discretizado, representado por Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_i} , Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle i=0,1,...,K} . Também podemos dividir o tempo em intervalos iguais Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta t} e denotá-los como Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle t_n} , Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle n =0,1...} .

Tendo feita a discretização das variáveis, podemos aproximar a equação da onda por diferenciação finita, utilizando derivadas centradas da seguinte forma:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial^2u}{\partial t^2}=\frac{U^{n+1}_{i}-2U^n_i+U^{n-1}_i}{\Delta t^2}}

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial^2u}{\partial x^2}=\frac{U^{n}_{i+1}-2U^n_i+U^{n}_{i-1}}{\Delta x^2}}

Assim, chegamos em uma equação discretizada:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{u_i^{n+1}-2u_i^n+u_i^{n-1}}{(\Delta t)^2} = v^2 \frac{u_{i+1}^n-2u_i^n+u_{i-1}^n}{(\Delta x)^2}} .

Sabendo que essa discretização da equação da onda pode ser verificada como sendo o método Leapfrog (ver seção do método de Leapfrog), podemos resolver a equação para Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle u_i^{n+1}} para sabermos o deslocamento de uma partição da corda no momento de tempo seguinte, assim obtendo

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle u_i^{n+1} = 2(1-r^2)u_i^n + r^2[u_{i+1}^n+u_{i-1}^n]-u_i^{n-1}} ,

onde Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle r = v \frac{\Delta t}{\Delta x}.}

Um Quadro Mais Realístico - O Modelo de Corda Rígida

Para nos aproximarmos de um modelo mais real, podemos adicionar um termo à equação original da onda que corresponde ao efeito de fricção em uma corda. De acordo com [1], a equação da onda mais geral com efeito de fricção pode ser escrita como

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial^2 y}{\partial t^2} = v^2 \left( \frac{\partial^2 y}{\partial x^2} - \epsilon L^2 \frac{\partial^4 y}{\partial x^4} \right),}

onde Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} é a velocidade transversal de propagação do pulso na corda, dada pela relação Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle v = \sqrt[]{\frac{T}{\rho}}} (sendo Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle T} a tensão na corda e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho} a densidade linear da mesma), Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon} é um parâmetro adimensional de fricção que representa a rigidez da corda e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle L} o comprimento da corda.

O parâmetro Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon} é dado por

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon = \kappa² \frac{E S}{T L^2}} ,

onde Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \kappa} é o raio da corda, Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle E} é o Módulo de Young e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle S} a área da secção da corda.

Ao discretizarmos a equação da onda em uma corda com fricção e a resolvendo para Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle u_i^{n+1}} obtemos:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle u_i^{n+1}=[2-2r^2-6\epsilon r^2K^2]u_i^n - u_i^{n-1} +r^2[1+4\epsilon K^2][u_{i+1}^n+u_{i-1}^n]-\epsilon r^2K^2[u_{i+2}^n + u_{i-2}^n].}

O fato de essa discretização depender do deslocamento da corda em posições Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle i-2} e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle i+2} implica em precisarmos simular "pontos fantasmas" quando integramos os extremos das cordas. Para fazermos isso, podemos ou utilizar a aproximação Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle u_{-1}^n = -u_{+1}^n} ou podemos considerar esses "pontos fantasmas" como pontos presos e, portanto, sempre iguais a zero.

Os Métodos Utilizados

Foi realizada uma abordagem ao problema da corda real a partir de três métodos diferentes de integração numérica. Os três são métodos para fins de resolução de equações diferenciais parciais da forma apresentada anteriormente.

O método mais básico é chamado de FTCS (Forward-Time-Centered-Space) e consiste em duas expansões de Taylor ao redor do ponto Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_j} :

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle u(x_j + \Delta x,t^n) = u(x_j,t^n) + \frac{\partial u}{\partial x}(x_j,t^n)\Delta x + \frac{1}{2} \frac{\partial^2 u}{\partial x^2}(x_j,t^n)\Delta x^2 + \mathcal{O}(\Delta x^3),}

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle u(x_j - \Delta x,t^n) = u(x_j,t^n) - \frac{\partial u}{\partial x}(x_j,t^n)\Delta x + \frac{1}{2} \frac{\partial^2 u}{\partial x^2}(x_j,t^n)\Delta x^2 + \mathcal{O}(\Delta x^3).}

Subtraindo as duas expressões, encontramos a expressão

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial u}{\partial x} |_j^n = \frac{u^n_{j+1} - u^n_{j-1}}{2 \Delta x} + \mathcal{O}(\Delta x^2)} ,

A qual podemos substituir na equação da onda, juntamente com a discretização da derivada parcial temporal. Temos então que, para um sistema linear de equações hiperbólicas:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textbf{U}^{n+1}_j = \textbf{U}^n_j - \frac{\Delta t}{2 \Delta x} [\textbf{F}^n_{j+1} - \textbf{F}^n_{j-1}] + \mathcal{O}(\Delta t^2, \Delta x^2 \Delta t)}

Visto que essa última notação é mais genérica, ela será utilizada para a explicação dos métodos posteriores.

O Método de Lax-Friedrichs

O método de Lax-Friedrichs consiste em substituir o termo Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textbf{U}^n_j} com sua respectiva média espacial, i.e., Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle u^n_j = (u^n_{j+1} + u^n_{j-1})/2} . Logo, temos a seguinte equação de recorrência:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textbf{U}^{n+1}_j = \frac{1}{2}(\textbf{U}^n_{j+1} + \textbf{U}^n_{j-1}) - \frac{\Delta t}{2 \Delta x} [\textbf{F}^n_{j+1} - \textbf{F}^n_{j-1}] + \mathcal{O}(\Delta x^2)}

O Método de Leapfrog

Podemos adaptar o método de Leapfrog para esse sistema de equações ao fazermos

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle k_{i+\frac{1}{2}}^n \equiv v \left.\frac{\partial u}{\partial x}\right|_{i+\frac{1}{2}}^{n} = v \frac{u_{i+1}^n-u_i^n}{\Delta x} + \mathcal{O}(\Delta x) \qquad (1) }

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle s_{i}^{n+\frac{1}{2}} \equiv \left.\frac{\partial u}{\partial t}\right|_{i}^{n+\frac{1}{2}} = \frac{u_{i}^{n+1}-u_i^n}{\Delta t} + \mathcal{O}(\Delta t) \qquad (2) }

Com a representação Leapfrog das equações do sistema de três equações, temos:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle k_{i+\frac{1}{2}}^{n+1} = k_{i+\frac{1}{2}}^n+r(s_{i+1}^{n+\frac{1}{2}}-s_{i}^{n+\frac{1}{2}})+\mathcal{O}(\Delta x^2) \qquad (3) }


Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle s_i^{n+\frac{1}{2}} = s_{i}^{n-\frac{1}{2}}+r(k_{i+\frac{1}{2}}^{n}-k_{i-\frac{1}{2}}^{n})+\mathcal{O}(\Delta x^2) \qquad (4) }

Com essas duas equações, podemos fazer uma integração utilizando o método de Euler para obter Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle u_j^{n+1}} , ou seja, o deslocamento de um determinado ponto no próximo instante de tempo:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle u_i^{n+1} = u_i^n + \frac{\Delta t}{2}s_i^{n+\frac{1}{2}}+\mathcal{O}(\Delta x^2).} Contudo, podemos fazer uma simples substituição das equações Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle (1)} e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle (2)} nas equações Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle (3)} e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle (4)} e, assim, obtemos que a representação de Leapfrog da equação da onda é dada pela discretização de segunda ordem da própria equação da onda, com Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{O}(\Delta t^2, \Delta x^2)} . Isso nos dá uma solução de "um passo", onde só precisamos efetuar o cálculo da equação discretizada.

O Método de Lax-Wendroff

O método de Lax-Wendroff é a extensão do método de Lax-Friedrichs de segunda ordem. Calculamos o vetor Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle U} a partir de um passo médio de Lax-Friedrichs:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textbf{U}^{n+\frac{1}{2}}_{j + \frac{1}{2}} = \frac{1}{2} [\textbf{U}^n_{j+1} + \textbf{U}^n_j] - \frac{\Delta t}{2 \Delta x} [\textbf{F}^n_{j+1} - \textbf{F}^n_j] + \mathcal{O}(\Delta x^2)} ,

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textbf{U}^{n+\frac{1}{2}}_{j - \frac{1}{2}} = \frac{1}{2} [\textbf{U}^n_{j} + \textbf{U}^n_{j-1}] - \frac{\Delta t}{2 \Delta x} [\textbf{F}^n_{j} - \textbf{F}^n_{j-1}] + \mathcal{O}(\Delta x^2)} ,

E encontramos os fluxos Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textbf{F}^{n+\frac{1}{2}}_{j \pm \frac{1}{2}}} a partir dos valores de Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textbf{U}^{n+\frac{1}{2}}_{j \pm \frac{1}{2}}.}

Logo, com um meio passo de Leapfrog, temos a expressão final do método:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textbf{U}^{n+1}_j = \textbf{U}^n_j - \frac{\Delta t}{\Delta x} [\textbf{F}^{n + \frac{1}{2}}_{j + \frac{1}{2}} - \textbf{F}^{n + \frac{1}{2}}_{j - \frac{1}{2}}] + \mathcal{O}(\Delta x^2)}

Análise e Discussão dos Resultados

Análise de Erro e Estabilidade dos Métodos

Conclusões (?)

vsf caetano vsf doria

Referências Bibliográficas