Equação de Langevin: mudanças entre as edições
Sem resumo de edição |
|||
| Linha 123: | Linha 123: | ||
Uma referência da literatura a respeito do MSD (mas no contexto de dinâmica molecular usando o potencial de Lennard-Jones) se encontra no livro do Frenkel, expressa por essa imagem: | Uma referência da literatura a respeito do MSD (mas no contexto de dinâmica molecular usando o potencial de Lennard-Jones) se encontra no livro do Frenkel, expressa por essa imagem: | ||
[[Arquivo:FrenkelMSD.png|thumb|center|500px|A partir da figura pode-se notar que a inclinação das retas representantes dos regimes | [[Arquivo:FrenkelMSD.png|thumb|center|500px|A partir da figura pode-se notar que a inclinação das retas representantes dos regimes balístico e difusivo são 2 e 1, valores esses encontrados pelas simulações realizadas.]] | ||
Outro aspecto importante a se ressaltar é a concordância do cálculo do coeficiente de difusão através da equação (I) e da relação de Einstein em (II), obtida através dos pontos presentes na parte difusiva. | Outro aspecto importante a se ressaltar é a concordância do cálculo do coeficiente de difusão através da equação (I) e da relação de Einstein em (II), obtida através dos pontos presentes na parte difusiva. | ||
Edição das 19h13min de 17 de outubro de 2022
Artur Uhlik Fröhlich e Leonardo Dasso Migotto
O objetivo deste trabalho é resolver computacionalmente a equação de Langevin utilizando o método BAOAB[LEIMKUHLER.] Serão explorados os casos de partículas individuais livres ou sujeitas a um campo potencial, estudando os efeitos da variação do coeficiente de atrito no desvio quadrático médio e na transisão de fases.
Equação de Langevin
Esta equação diferencial estocástica descreve a evolução de um sistema quando sujeito a forças do tipo determinísticas e estocásticas simultâneamente. A sua aplicação mais popular é relativa ao movimento Browniano, o movimento de uma partícula macroscópica imersa em um fluído, sujeita à força de atrito excercida pelas partículas microscópicas do fluído. Neste caso, a equação pode ser escrita como:
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d\vec{v}}{dt} = -\gamma \vec{v}/m + \xi (t). }
Na equação acima, Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma} é o coeficiente de atrito e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \xi(t)} é um ruído estocástico branco, que segue o Teorema Central do Limite com média 0 e desvio padrão relacionado à temperatura, a Constante de Boltzmann, Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma} e a massa da partícula. A partir desta expressão, é possível descobrir a relação do coeficiente de difusão do fluído e os valores envolvidos na equação:
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle D = \frac{2k_{B}T}{\gamma m} \quad (I) }
Onde Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle D} é o coeficiente de difusão do meio, Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle k_B} é a constante de Boltzmann, Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle T} é a temperatura e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle m} é a massa da partícula macroscópica. Outra relação presente no livro do Frenkel [1], desenvolvida teoricamente, é a do coeficiente de difusão e o deslocamento quadrático médio de uma partícula no meio:
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left \langle \left( r(t) - r_0(t) \right)^2 \right \rangle = 2dDt \quad (II) }
Método BAOAB
O método numérico escolhido para realizar a integração da equação é conhecido como BAOAB, desenvolvido por Leimkuhler e Mattews [2] utilizado para resolver equações diferenciais estocásticas.
Ele é baseado na solução exata para o momentum,
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle d\vec{p} = -\gamma \vec{p}dt + \sqrt{2\gamma mk_{B}T}d\vec{W} , }
e faz o uso de um método de separação das equações entre as denominadas A, B e O, respectivamente representadas:
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{r}\left(t+\frac{\Delta t}{2}\right) = \vec{r}(t) +\frac{\Delta t}{2}\vec{p}\left ( t +\frac{\Delta t}{2}\right )\frac{1}{m} }
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{p}\left(t + \frac{\Delta t}{2}\right) = \vec{p}(t) + \frac{\Delta t}{2}\vec{f}(t) }
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{p'}\left(t + \frac{\Delta t}{2}\right) = exp(-\gamma \Delta t)\vec{p}\left(t + \frac{\Delta t}{2}\right) + \sqrt{1-exp(-2\gamma \Delta t)}\sqrt{mk_{B}T}\vec{G} }
O Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{G}} aqui representa um número aleatório Gaussiano que faz o papel do ruído estocástico.
A equação "A" realiza meio passo no tempo da distância, a "B" realiza um meio passo para o momentum e o "O" contabiliza a contribuição estocástica equação.
Essas equações podem formar vários algoritmos de integração mas o utilizado nesse trabalho será o BAOAB:
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{p}\left(t + \frac{\Delta t}{2}\right) = \vec{p}(t) + \frac{\Delta t}{2}\vec{f}(t) \quad (1) }
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{r}\left(t+\frac{\Delta t}{2}\right) = \vec{r}(t) +\frac{\Delta t}{2}\vec{p}\left ( t +\frac{\Delta t}{2}\right )\frac{1}{m} \quad (2) }
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{p'}\left(t + \frac{\Delta t}{2}\right) = exp(-\gamma \Delta t)\vec{p}\left(t + \frac{\Delta t}{2}\right) + \sqrt{1-exp(-2\gamma \Delta t)}\sqrt{mk_{B}T}\vec{G} \quad (3) }
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{r}(t + \Delta t) = \vec{r}\left(t + \frac{\Delta t}{2}\right) +\frac{\Delta t}{2}\vec{p'}\left ( t +\frac{\Delta t}{2}\right )\frac{1}{m} \quad (4) }
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{p}(t + \Delta t) = \vec{p'}\left(t + \frac{\Delta t}{2}\right) + \frac{\Delta t}{2}\vec{f}(t) \quad (5) }
É importante lembrar que entre os dois últimos passos é necessário atualizar o termo Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{f}} , já que ele pode depender de termos já atualizados como Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{p}} ou Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{r}} .
Implementação
Um exemplo de implementação desse método feito foi para a partícula livre. Nota-se que nesse caso a partícula não é afetada por um campo potencial então os passos do método que envolvem a força Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{f}} serão desconsiderados.
A função a seguir se encontra em um código (orientado a objeto) de autoria de do integrante Artur e que pode ser acessado aqui.
def baoab_livre(self, dt, exp, sqexp, sqt, G):
'''
dt: discretização do tempo
exp: termo referente a primeira exponencial da eq.3
sqexp: termo da raiz quadrada com exponencial da eq.3
sqt: termo da raiz quadrada com a Temperatura da eq.3
G: o vetor G da eq.3
'''
# 1/2 passo da distância
self.pos[0] += self.vel[0]*(dt/2)
self.pos[1] += self.vel[1]*(dt/2)
# Passo estocástico
self.vel[0] = exp*self.vel[0] + sqexp*sqt*G[0]
self.vel[1] = exp*self.vel[1] + sqexp*sqt*G[1]
# Atualização final da posição
self.pos[0] += self.vel[0]*(dt/2)
self.pos[1] += self.vel[1]*(dt/2)
Essa função representa um passo do laço temporal utilizando o método BAOAB. Os atributos em forma de lista ".pos" e ".vel" representam as componentes x e y respectivamente da posição e velocidade do objeto partícula.
Um exemplo de funcionamento do código é a animação a seguir:
. O código foi executado usando a semente de números aleatórios 420.
Análise do MSD
Os resultados a serem analisados são originados do código (procedural) do integrante Leonardo.
Foram executadas diferentes vezes a simulação para compararmos a influência do Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma} e da temperatura no deslocamento quadrático médio.
GRÁFICOS AQUI!!!!
De início pode-se notar que o Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta r^{2}} escala de maneira proporcional a Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^{2}} (balístico) no início do processo, e depois de um determinado tempo obtemos uma relação linear que é a parte difusiva do processo. Essas inclinações das retas nos regimes balístico e difusivo são constantes em relação ao Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma} e à temperatura. Outro aspecto constante é a temperatura, que não gera aparente diferença nos gráficos de MSD
Uma referência da literatura a respeito do MSD (mas no contexto de dinâmica molecular usando o potencial de Lennard-Jones) se encontra no livro do Frenkel, expressa por essa imagem:
Outro aspecto importante a se ressaltar é a concordância do cálculo do coeficiente de difusão através da equação (I) e da relação de Einstein em (II), obtida através dos pontos presentes na parte difusiva.
Uma relação interessante encontrada foi a maneira como escala a mudança de regimes, indicada pela reta perpendicular ao eixo do tempo. Podemos encontrar uma aproximação para o tempo em que o regime difusivo inicia na simulação a partir da relação dependente de Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma} :
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Omega = \frac{10}{\gamma} }
Referências
- ↑ Daan Frenkel and Berend Smit. 2001. Understanding Molecular Simulation (2nd. ed.). Academic Press, Inc., USA.
- ↑ Leimkuhler, B., & Matthews, C. (2015). Molecular Dynamics: With Deterministic and Stochastic Numerical Methods. (Interdisciplinary Applied Mathematics; Vol. 39). Springer. https://doi.org/10.1007/978-3-319-16375-8