Grupo3 - Ondas2: mudanças entre as edições

De Física Computacional
Ir para navegação Ir para pesquisar
Linha 17: Linha 17:
<math>\frac{\partial u}{\partial t} + v \frac{\partial u}{\partial x} = 0</math>,
<math>\frac{\partial u}{\partial t} + v \frac{\partial u}{\partial x} = 0</math>,


onde <math>v</math> é a velocidade de propagação do pulso gerado. A equação admite uma solução analítica da forma <math>u = f(x - vt)</math>, representando uma onda se movendo na direção <math>x</math>.\\
onde <math>v</math> é a velocidade de propagação do pulso gerado. A equação admite uma solução analítica da forma <math>u = f(x - vt)</math>, representando uma onda se movendo na direção <math>x</math>.


A equação da onda em uma dimensão é uma EDP hiperbólica de segunda ordem dada por
A equação da onda em uma dimensão é uma EDP hiperbólica de segunda ordem dada por
Linha 25: Linha 25:
</math>
</math>


E admite duas soluções, representadas por pulsos, <math>f(x + vt)</math> e <math>f(x - vt)</math>.\\
E admite duas soluções, representadas por pulsos, <math>f(x + vt)</math> e <math>f(x - vt)</math>.


Assumindo que <math>v \neq v(x)</math> na equação da onda, nos restringimos a problemas lineares. Além disso, se escrevermos
Assumindo que <math>v \neq v(x)</math> na equação da onda, nos restringimos a problemas lineares. Além disso, se escrevermos


<math>
<math>
k = v \frac{\partial u}{\partial x}, \hspace[twoem] s = \frac{\partial u}{\partial t},
k = v \frac{\partial u}{\partial x} </math>,         <math>s = \frac{\partial u}{\partial t},
</math>
</math>



Edição das 21h05min de 24 de outubro de 2017

Introdução

Equações diferenciais parciais (EDP's) hiperbólicas geralmente podem ser formuladas a partir de teoremas de conservação. Um exemplo é a equação do tipo:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial \vec{U}}{\partial t} + \nabla \cdot \vec{F}(U) = \vec{S}(U)} ,

onde Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{U}} é o vetor de densidades da quantidade conservada, i.e., Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{U} = (U_1,...,U_n)} , Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{F}} é o fluxo de densidade e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{S}} é um termo genérico representando fontes ou sumidouros.

Uma classe especial de equações hiperbólicas são as chamadas equações de adveção, na qual a derivada temporal da quantidade conservada Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{U}(\vec{x},t)} é proporcional à sua derivada espacial. Nesses casos, Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{F}(U)} é diagonal e dada por:

,

onde é a matriz identidade.

Considerando apenas uma dimensão e com , temos a equação de adveção:

,

onde é a velocidade de propagação do pulso gerado. A equação admite uma solução analítica da forma , representando uma onda se movendo na direção .

A equação da onda em uma dimensão é uma EDP hiperbólica de segunda ordem dada por

Falhou ao verificar gramática (erro de sintaxe): {\displaystyle \frac{\partial² u}{\partial t²} = v² \frac{\partial² u}{\partial x²}. }

E admite duas soluções, representadas por pulsos, e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x - vt)} .

Assumindo que Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle v \neq v(x)} na equação da onda, nos restringimos a problemas lineares. Além disso, se escrevermos

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle k = v \frac{\partial u}{\partial x} } , Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle s = \frac{\partial u}{\partial t}, }

então a equação da onda pode ser escrita como um sistema de três equações diferenciais de primeira ordem:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{cases}\frac{\partial k}{\partial t} = v\frac{\partial s}{\partial x} \\ \frac{\partial s}{\partial t} = v\frac{\partial k}{\partial x} \\ \frac{\partial u}{\partial t} = s \end{cases} }

Em notação vetorial, o sistema acima pode ser reescrito na forma conservativa como: Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial U}{\partial t}+ \frac{\partial F(U)}{\partial x} = 0 } ,

onde Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle U = \begin{pmatrix}k\\s\end{pmatrix},\quad \textrm{e}\quad F(U) =\begin{pmatrix}0 & -v\\-v & 0\end{pmatrix}}