Grupo3 - Ondas2: mudanças entre as edições
Linha 30: | Linha 30: | ||
<math> | <math> | ||
k = v | k = v \frac{\partial u}{\partial x}, s = \frac{\partial u}{\partial t}, | ||
</math> | </math> | ||
Edição das 21h00min de 24 de outubro de 2017
Introdução
Equações diferenciais parciais (EDP's) hiperbólicas geralmente podem ser formuladas a partir de teoremas de conservação. Um exemplo é a equação do tipo:
,
onde é o vetor de densidades da quantidade conservada, i.e., , é o fluxo de densidade e é um termo genérico representando fontes ou sumidouros.
Uma classe especial de equações hiperbólicas são as chamadas equações de adveção, na qual a derivada temporal da quantidade conservada é proporcional à sua derivada espacial. Nesses casos, é diagonal e dada por:
,
onde é a matriz identidade.
Considerando apenas uma dimensão e com , temos a equação de adveção:
,
onde é a velocidade de propagação do pulso gerado. A equação admite uma solução analítica da forma , representando uma onda se movendo na direção .\\
A equação da onda em uma dimensão é uma EDP hiperbólica de segunda ordem dada por
Falhou ao verificar gramática (erro de sintaxe): {\displaystyle \frac{\partial² u}{\partial t²} = v² \frac{\partial² u}{\partial x²}. }
E admite duas soluções, representadas por pulsos, e .\\
Assumindo que na equação da onda, nos restringimos a problemas lineares. Além disso, se escrevermos
então a equação da onda pode ser escrita como um sistema de três equações diferenciais de primeira ordem:
Em notação vetorial, o sistema acima pode ser reescrito na forma conservativa como: ,
onde