Grupo2 - Ondas1: mudanças entre as edições
Linha 73: | Linha 73: | ||
<math> v_{j-\frac{1}{2}}^{n+\frac{1}{2}} = \frac{1}{2}( v_{j}^{n} + v_{j-1}^{n} ) + \frac{\Delta t }{2\Delta x} (w_{j}^{n} - w_{j-1}^{n}) </math> | <math> v_{j-\frac{1}{2}}^{n+\frac{1}{2}} = \frac{1}{2}( v_{j}^{n} + v_{j-1}^{n} ) + \frac{\Delta t }{2\Delta x} (w_{j}^{n} - w_{j-1}^{n}) </math> | ||
Para w resulta em: | |||
<math> w_{j}^{n+1} = w_j^n + \frac{\Delta t}{2\Delta x} </math> | <math> w_{j}^{n+1} = w_j^n + \frac{\Delta t}{\Delta x} \Bigg[\frac{1}{2}(v_{j+1}^{n} - v_{j-1}^{n}) + \frac{\Delta t}{2\Delta x} (w_{j+1}^{n} - 2 w_{j}^{n} + w_{j-1}^{n})\Bigg] </math> | ||
Agora encontraremos a equação para v: | |||
<math> v_{j}^{n+1} = v_{j}^{n} + \frac{\Delta t}{\Delta x} \Big(w_{j+\frac{1}{2}}^{n+\frac{1}{2}} - w_{j-\frac{1}{2}}^{n+\frac{1}{2}}\Big) </math> | |||
Sendo que: | |||
<math> w_{j+\frac{1}{2}}^{n+\frac{1}{2}} = \frac{1}{2}( w_{j+1}^{n} + w_{j}^{n} ) + \frac{\Delta t }{2\Delta x} (v_{j+1}^{n} - v_{j}^{n}) </math> | |||
<math> w_{j-\frac{1}{2}}^{n+\frac{1}{2}} = \frac{1}{2}( w_{j}^{n} + w_{j-1}^{n} ) + \frac{\Delta t }{2\Delta x} (v_{j}^{n} - v_{j-1}^{n}) </math> | |||
Para v resulta em: | |||
<math> v_{j}^{n+1} = v_j^n + \frac{\Delta t}{\Delta x} \Bigg[\frac{1}{2}(w_{j+1}^{n} - w_{j-1}^{n}) + \frac{\Delta t}{2\Delta x} (v_{j+1}^{n} - 2 v_{j}^{n} + v_{j-1}^{n})\Bigg] </math> | |||
== Análise de erros e estabilidade == | == Análise de erros e estabilidade == |
Edição das 23h56min de 23 de outubro de 2017
Introdução
A modelagem numérica vem se tornando cada vez mais uma ferramenta indispensável para um engenheiro. Tal modelagem pode trazer informações importantes para entender como melhor abordar o desenvolvimento de um projeto, neste caso, um que envolva ondas. Nós, como futuros engenheiros físicos, pensamos em trazer um problema mais "concreto", de engenharia costeira e portuária, que pode ou não surgir em nossas vidas profissionais mas cujo método de solução certamente estará presente. Aqui será apresentado um modelo baseado em uma condição inicial e um perfil topográfico do local estudado que descreve a evolução temporal de uma onda.
Nos métodos a seguir faremos a seguinte separação na equação da onda, que é uma equação diferencial parcial de segunda ordem:
Admitindo :
Uma vez que os métodos citados abaixo são para equações de primeira ordem, é necessário separarmos a equação em um sistema de equações, fazendo a substituição e :
Algoritmos
Apresentaremos aqui três abordagens diferentes para a solução da equação diferencial parcial apresentada, e após, seus respectivos erros associados.
Método de Lax-Friedrichs
Esse método consiste em discretizar as equações no esquema FTCS, ou seja:
Aqui agora vamos unir todas as equações para que no programa possamos iterar apenas uma equação ao invés de 3.
Leap-Frog
Para v temos:
Para w temos:
Para u temos:
Juntando todas elas temos:
Método de Lax-Wendroff de Dois Passos
Para w resulta em:
Agora encontraremos a equação para v:
Sendo que:
Para v resulta em:
Análise de erros e estabilidade
A análise de erros se torna mais evidente durante a escolha do parâmetro , onde . Valores grandes trazem pouca acurácia, e valores pequenos necessitam de muito poder de computação (tempo e dinheiro). Trazemos problemas mais simplificados como um "guia" de escolha do parâmetro.
A partir do cálulo da solução analítica da equação da onda, podemos calcular quanto o valor obtido pelos métodos difere da solução real, o que leva a uma visualização do erro corrente em cada método de integração.
Podemos observar a ordem com que os erros crescem à medida que o parâmetro k se torna maior. Lembrando que os valores da constante são determinados pela discretização do espaço e do tempo.
- GRAFICO DAS ENERGIA X T*
Simulação de Propagação de Onda 2D Dependente de Topografia
O modelo mais simples parte da equação da onda [1], acrescentando o termo .
,
Sendo uma representação da profundidade em águas calmas. Em uma situação real, pode-se obtê-la por mapeamento eletrônico do terreno por sistema de sonar.
Como primeira abordagem visando uma análise em 2D, a integração da equação em 1D (mesmo sendo uma situação muito idealizada) já traz resultados interessantes. Podemos observar, por exemplo, que a amplitude da onda cresce perto da costa. Esta informação por si só ajuda na construção de proteção contra quebra de ondas, pois é obtido o tamanho que as mesmas atingem.
É importante notar o quão poderosa é a integração de equações parciais na vida de um engenheiro.
A dependência em de permite um modelo no qual o terreno se modifica com o tempo. Isto é, pode-se observar o efeito que o deslocamento de placas tectônicas, deslizamentos, e até explosões provocam no comportamento das ondas na costa de um país e o reconhecimento de áreas críticas.
Estendendo o algoritmo do Leap-Frog à situação 2D, obtemos, para uma dada condição inicial e , onde é uma constante:
Podemos então, analisar como a mesma condição inicial se porta quando descreve uma gaussiana na origem:
Bibliografia
1"The Wave Equation in 1D and 2D," por Knut–Andreas Lie, Dept. of Informatics, University of Oslo; disponível em: [1]; Último acesso em 23/10/2017.
2"Digital terrain mapping of the underside of sea ice from a small AUV," por Wadhams, M. J. Doble; disponível em: DOI: 10.1029/2007GL031921 ; Último acesso em 23/10/2017.