Grupo2 - Ondas1: mudanças entre as edições
Sem resumo de edição |
|||
Linha 60: | Linha 60: | ||
<math> u_{j}^{n+\frac{1}{2}} = u_j^n + v_{j}^{n+\frac{1}{2}} \Delta t</math> | <math> u_{j}^{n+\frac{1}{2}} = u_j^n + v_{j}^{n+\frac{1}{2}} \Delta t</math> | ||
Juntando todas elas temos: | |||
<math> u_{j}^{n+1} = 2u_{j}^{n} - u_{j}^{n-1} + \frac{(\Delta t)^2}{(\Delta x)^2}(u_{j+1}^{n} - 2u_{j}^{n} + u_{j-1}^{n}) </math> | |||
===Método de Lax-Wendroff de Dois Passos=== | ===Método de Lax-Wendroff de Dois Passos=== |
Edição das 23h23min de 23 de outubro de 2017
Introdução
A modelagem numérica vem se tornando cada vez mais uma ferramenta indispensável para um engenheiro. Tal modelagem pode trazer informações importantes para entender como melhor abordar o desenvolvimento de um projeto, neste caso, um que envolva ondas. Nós, como futuros engenheiros físicos, pensamos em trazer um problema mais "concreto", de engenharia costeira e portuária, que pode ou não surgir em nossas vidas profissionais mas cujo método de solução certamente estará presente. Aqui será apresentado um modelo baseado em uma condição inicial e um perfil topográfico do local estudado que descreve a evolução temporal de uma onda.
Nos métodos a seguir faremos a seguinte separação na equação da onda, que é uma equação diferencial parcial de segunda ordem:
Admitindo :
Fazendo a substituição e , podemos separar a equação em um sistema de equações de primeira ordem:
Algoritmos
Apresentaremos aqui três abordagens diferentes para a solução da equação diferencial parcial apresentada, e após, seus respectivos erros associados.
Método de Lax-Friedrichs
Temos:
Aqui agora vamos unir todas as equações para que no programa possamos iterar apenas uma equação ao invés de 3.
Leap-Frog
Para v temos:
Para w temos:
Para u temos:
Juntando todas elas temos:
Método de Lax-Wendroff de Dois Passos
Juntando para w:
Análise de erros e estabilidade
A análise de erros se torna mais evidente durante a escolha do parâmetro k, onde k = dt/dx. Valores grandes trazem pouca acurácia, e valores pequenos necessitam de muito poder de computação (tempo e dinheiro). Trazemos problemas mais simplificados como um "guia" de escolha do parâmetro.
A partir do cálulo da solução analítica da equação da onda, podemos calcular quanto o valor obtido pelos métodos difere da solução real, o que leva a uma visualização do erro corrente em cada método de integração.
- GRAFICO ERROS X K*
Podemos observar a ordem com que os erros crescem à medida que o parâmetro k se torna maior. Lembrando que os valores da constante são determinados pela discretização do espaço e do tempo.
- GRAFICO DAS ENERGIA X T*
Simulação de Propagação de Onda 2D Dependente de Topografia
O modelo mais simples parte da equação da onda [1], acrescentando o termo .
- EQUAÇÃO*,
Sendo uma representação da profundidade em águas calmas. Em uma situação real, pode-se obtê-la por mapeamento eletrônico do terreno por sistema de sonar.
Como primeira abordagem , a integração da equação em 1D (mesmo sendo uma situação muito idealizada) já traz resultados interessantes. Podemos observar, por exemplo, que a amplitude da onda cresce perto da costa. Esta informação por si só ajuda na construção de proteção contra quebra de ondas, pois é obtido o tamanho que as mesmas atingem.
É importante notar o quão poderosa é a integração de equações parciais na vida de um engenheiro.
A dependencia em de permite um modelo no qual o terreno se modifica com o tempo. Isto é, pode-se observar o efeito que o deslocamento de placas tectônicas, deslizamentos, e até explosões provocam no comportamento das ondas na costa de um país e o reconhecimento de áreas críticas.
Bibliografia
1"The Wave Equation in 1D and 2D," por Knut–Andreas Lie, Dept. of Informatics, University of Oslo; disponível em: [1]; Último acesso em 23/10/2017.
2"Digital terrain mapping of the underside of sea ice from a small AUV," por Wadhams, M. J. Doble; disponível em: DOI: 10.1029/2007GL031921 ; Último acesso em 23/10/2017.