Equação de Águas Rasas: mudanças entre as edições
Linha 201: | Linha 201: | ||
No desenvolvimento do programa não foi conseguido alcançar os resultados esperados, pois o sistema não converge após um tempo. Mesmo assim, vamos apresentar o código ? escrito na linguagem [https://www.python.org/ ''Python'']. | |||
<source lang="python"> | <source lang="python"> | ||
#%% Bibliotecas | |||
import numpy as np | |||
import matplotlib.pyplot as plt | |||
from mpl_toolkits.mplot3d import Axes3D | |||
from matplotlib import animation | |||
import matplotlib.patches as mpatches | |||
#%% Parametros | |||
L_xf = 10.0 # m | |||
L_x0 = -L_xf | |||
NX = 100 | |||
dx = (L_xf - L_x0) / NX | |||
L_yf = 10.0 # m | |||
L_y0 = -L_yf | |||
NY = 100 | |||
dy = (L_yf - L_y0) / NY | |||
N_INNER = (NX - 2) * (NY - 2) | |||
g = 9.8 # m /s^2 | |||
# Tempo | |||
dt = 0.002 | |||
Nt = 1000 | |||
time_interval = np.arange(0, Nt*dt, dt) | |||
#%% Discretização do espaço x-y | |||
x = np.linspace(L_x0, L_xf, NX-1) | |||
y = np.linspace(L_y0, L_yf, NY-1) | |||
X, Y = np.meshgrid(x, y) | |||
#%% Condições iniciais, em distribuição gaussiana | |||
sigma = 0.6 | |||
sigma_v = 0.6 | |||
h_2d = 0.8 * np.exp(-(((X)**2 / 2*(sigma**2)) + ((Y)**2 / 2*(sigma**2)))) | |||
u_2d = 0.1 * np.exp(-(((X)**2 / 2*(sigma_v**2)) + ((Y)**2 / 2*(sigma_v**2)))) | |||
v_2d = 0.1 * np.exp(-(((X)**2 / 2*(sigma_v**2)) + ((Y)**2 / 2*(sigma_v**2)))) | |||
</source> | |||
== Referências == | == Referências == | ||
<references/> | <references/> |
Edição das 08h18min de 8 de outubro de 2021
Em construção Grupo: Gabriel Schmökel, Julia Remus e Pedro Inocêncio Rodrigues Terra
Introdução
Tsunami é um fenômeno da natureza caracterizado por uma sucessão de ondas marinhas, que devido ao seu grande volume e alta velocidade, podem se tornar catastróficas ao atingir a costa. Sismos, erupções vulcânicas, deslizamentos de terra, impactos e outros movimentos submarinos são a causa para a formação deste evento, sendo a grande maioria provocado pelos movimentos das placas tectônicas.
Formação de um Tsunami
Vamos analisar a sequência de passos da formação de uma Tsunami formada a partir de um abalo sísmico:
I. A convergência das placas tectônicas, devido as correntes de convecção, faz com que existam forças de tensão entre as placas.
IMAGEM
A tensão entre as placas eventualmente ultrapassa o limite máximo, o que provoca o deslizamento brusco de uma das placas sobre a outra, gerando um grande deslocamento de volume de água na vertical. Como a tsunami ocorre em grandes profundidades, ela pode passar despercebida para um barco que navega nas proximidades, uma vez que amplitude da onda é menor.
IMAGEM
II. A onda gerada se propaga ao longo de todas as direções do plano da água.
IMAGEM
III. A medida que a onda se aproxima da superfície ela diminui sua velocidade e aumenta sua amplitude
IMAGEM
Temos o interesse de descrever fisicamente a propagação da Tsunami de acordo com a topografia da água e do mar, por essa razão não iremos estudar o efeito físico que causou o deslocamento do volume de água.
Teoria
Derivação das EQs. de Águas Rasas
Para obter as equações de águas rasas devemos partir da equação da continuidade e das equações da quantidade de movimento de Navier-Stokes:
é a densidade; p é a pressão; é o vetor velocidade do fluído, onde u,v e w são as velocidades das partículas que compõe o fluído nas direções x,y,z; é o vetor aceleração da gravidade; é o tensor tensão, onde as componentes deste tensor são as tensões normais e tangenciais de cisalhamento, expressas por , no qual indica a direção e o plano normal.
Introduzindo as condições de contorno [1] para a superfície e para a profundidade do oceano :
, onde
, onde
é o deslocamento vertical da água sobre a superfície em repouso, é o vetor velocidade do fluído nas direções horizontais x e y.
A equação da continuidade em (3) pode ser simplificada, já que a densidade do fluído no oceano não varia significativamente com o tempo e a posição.
Integrando a expressão da continuidade em (6), utilizando a regra da integral de Leibniz [1], com os limites indo de até chegamos na seguinte expressão:
Teorema de Leibniz:
Substituindo as condições de contorno da profundidade (5) em (7) obtemos:
Substituindo a condição de contorno da superfície (4) em (9):
(10) é a primeira das equações das águas rasas que obtemos, onde é o comprimento da água total do fundo do oceano até a amplitude da onda. Podemos expressar (10) através do fluxo de descarga nas direções x e y, estás quantidades estão relacionadas com as velocidades da seguinte forma [1]:
Substituindo (11) e (12) em (10) chegamos na representação do fluxo de descarga para uma das equações de águas rasas.
Escrevendo as quantidades de movimento de Navier-Stokes nas componentes x,y e z:
Falhou ao verificar gramática (erro de sintaxe): {\displaystyle \frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} + w\frac{\partial u}{\partial z} +\frac{1}{\rho}\frac{\partial P}{\partial x} +g_x = 0 \qquad (14) }
Falhou ao verificar gramática (erro de sintaxe): {\displaystyle \frac{\partial v}{\partial t} + u\frac{\partial v}{\partial x} + v\frac{\partial v}{\partial y} + w\frac{\partial v}{\partial z} +\frac{1}{\rho}\frac{\partial P}{\partial x} +g_y = 0 \qquad (15) }
Na componente z em (15) negligenciamos a aceleração das partículas, pois a aceleração da gravidade é muito maior. Também tomamos como nulos as componentes e em (14) e passamos a definir .
Resolvendo equação diferencial da componente z em (16) podemos obter a pressão, a qual é hidrostática.
Substituindo a pressão em (14):
Integrando a equação (18) em relação a componente z com os limites indo
Integrando a expressão (18), utilizando a regra da integral de Leibniz [1] e as condições de contorno (4) e (5), com os limites indo de até chegamos em outra das equações de águas rasas:
Generalizando a equação (18), para a componente y, obtemos a última das equações de águas rasas:
Na representação de fluxo de cargas as expressões (18) e (19) são apresentadas respectivamente como:
Iremos escrever as equações das águas rasas considerando o tensor de estresse . Os elementos deste tensor são responsáveis por causar nas partículas tensões tangenciais e perpendiculares, onde as tensões tangenciais são representadas por elementos onde , e as perpendiculares por elementos onde
Decompondo nas componentes x,y, e z de presente em (4):
Considerando o fluído Newtoniano, então as tensões de cisalhamento serão proporcionais a uma taxa de deformação, onde a constante de deformidade é a viscosidade.
Substituindo (25),(26) em (25), integrando em relação a componente z, utilizando a regra de Leibnz e as condições de contorno (3) e (4), obtemos:
Onde é a constante de viscosidade turbulenta, é uma força de resistividade relativa ao movimento do fluído com o fundo do oceano na direção x. Podemos negligenciar a constante de turbulência na situação em que não temos inclinações abrutas no fundo do mar. [1].
Considerando que o fluído é uniforme, então a expressão para Falhou ao verificar gramática (erro de sintaxe): {\displaystyle \frac{\tau_x}{\rho} é } é:
é o coeficiente de fricção, porém o coeficiente de rugosidade de Manning é mais usado, alguns valores deste coeficiente são:
- Cimento puro e metal liso
- Terra lisa
- Pedras, ervas daninhas
- Péssimo relevo de canal
- Bom relevo de canal
O coeficiente de fricção e o de rugosidade de Meanning estão relacionados por:
Substituindo (30) em (29) obtemos:
Falhou ao verificar gramática (função desconhecida '\math'): {\displaystyle \frac{\tau_x}{\rho} = \frac{gn^{2}}{D^{7/3}} M(M^2 +N^2)^{1/2} \qquad (30) <\math> === Forma Conservativa === Um modelo mais simples - desconsiderando a fricção, viscosidade do líquido e as forças de Coriolis sobre ele - pode ser obtido <ref>GARCÍA-NAVARRO, P; et al. The shallow water equations: An example of hyperbolic system. Espanha: 2008. Disponível em: <https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.571.1364&rep=rep1&type=pdf></ref><ref>KUHBACHER, Christian. Shallow Water: Derivation and Applications. Disponível em: <http://www.mathematik.tu-dortmund.de/lsiii/cms/papers/Kuehbacher2009.pdf></ref>. Para desenvolvê-lo são necessárias algumas premissas: * O comprimento da onda é muito maior que as contribuições na direção <math>\vec{z}}
- A aceleração na direção da velocidade na direção é zero
- As componentes das velocidades em e em ( e ) não variam em
O sistema então pode ser descrito pelas seguintes equações:
Onde é a altura do fluido desde a base, são as velocidades médias na direções , é a constante gravitacional e é função que descreve a superfície onde acontece o movimento [1].
Desenvolvimento do cálculo
Forma conservativa 2D
Para descrever numericamente o fenômeno foi utilizado discretização por diferenças finitas e o método pra frente no tempo e no espaço (FTCS). As equações discretizadas podem ser observadas abaixo.
No desenvolvimento do programa não foi conseguido alcançar os resultados esperados, pois o sistema não converge após um tempo. Mesmo assim, vamos apresentar o código ? escrito na linguagem Python.
#%% Bibliotecas
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import animation
import matplotlib.patches as mpatches
#%% Parametros
L_xf = 10.0 # m
L_x0 = -L_xf
NX = 100
dx = (L_xf - L_x0) / NX
L_yf = 10.0 # m
L_y0 = -L_yf
NY = 100
dy = (L_yf - L_y0) / NY
N_INNER = (NX - 2) * (NY - 2)
g = 9.8 # m /s^2
# Tempo
dt = 0.002
Nt = 1000
time_interval = np.arange(0, Nt*dt, dt)
#%% Discretização do espaço x-y
x = np.linspace(L_x0, L_xf, NX-1)
y = np.linspace(L_y0, L_yf, NY-1)
X, Y = np.meshgrid(x, y)
#%% Condições iniciais, em distribuição gaussiana
sigma = 0.6
sigma_v = 0.6
h_2d = 0.8 * np.exp(-(((X)**2 / 2*(sigma**2)) + ((Y)**2 / 2*(sigma**2))))
u_2d = 0.1 * np.exp(-(((X)**2 / 2*(sigma_v**2)) + ((Y)**2 / 2*(sigma_v**2))))
v_2d = 0.1 * np.exp(-(((X)**2 / 2*(sigma_v**2)) + ((Y)**2 / 2*(sigma_v**2))))
Referências
- ↑ 1,0 1,1 1,2 1,3 1,4 https://docplayer.net/49487265-Lecture-8-the-shallow-water-equations.html Erro de citação: Etiqueta inválida
<ref>
; Nome "Hopf" definido várias vezes com conteúdo diferente Erro de citação: Etiqueta inválida<ref>
; Nome "Hopf" definido várias vezes com conteúdo diferente Erro de citação: Etiqueta inválida<ref>
; Nome "Hopf" definido várias vezes com conteúdo diferente Erro de citação: Etiqueta inválida<ref>
; Nome "Hopf" definido várias vezes com conteúdo diferente