Equação de Águas Rasas: mudanças entre as edições

De Física Computacional
Ir para navegação Ir para pesquisar
Linha 4: Linha 4:
=== Forma Conservativa ===
=== Forma Conservativa ===


A partir das equações de conservação de momento e de massa, pode ser obtida as equações de águas rasas na forma conservativa. A forma conservativa da equação de águas rasas desconsidera a viscosidade do fluido e as tensões de cisalhamento aplicadas nele. Ela pode ser descrita como:
A partir das equações de conservação de momento e de massa, pode ser obtida as equações de águas rasas na forma conservativa. A forma conservativa da equação de águas rasas desconsidera a viscosidade do fluido e as tensões de cisalhamento aplicadas nele.  


<math>Inserir fórmula aqui</math>
<math>\nabla \cdot v = 0</math>
 
<math>\dfrac{\partial u}{\partial x} + \dfrac{\partial v}{\partial y} + \dfrac{\partial w}{\partial z} = 0</math>
 
A conservação de massa, sendo que <math>\vec{u}</math>


Ao aproximar por diferenças finitas obtemos o sistema de equações discretizadas a seguir.
Ao aproximar por diferenças finitas obtemos o sistema de equações discretizadas a seguir.

Edição das 22h25min de 7 de outubro de 2021

(EM EDIÇÃO) Grupo: Gabriel Schmökel, Julia Remus e Pedro Inocêncio Rodrigues Terra

Forma Conservativa

A partir das equações de conservação de momento e de massa, pode ser obtida as equações de águas rasas na forma conservativa. A forma conservativa da equação de águas rasas desconsidera a viscosidade do fluido e as tensões de cisalhamento aplicadas nele.

A conservação de massa, sendo que

Ao aproximar por diferenças finitas obtemos o sistema de equações discretizadas a seguir.

Resolvendo pelo método de FTCS (para frente no tempo) e ajustando aos limites de estabilidade, temos como resultado:

.... aqui gráfico ....


Para esse desenvolvimento encontramos algumas dificuldades para resolução do sistema de equações.