DM de potenciais descontínuos: mudanças entre as edições

De Física Computacional
Ir para navegação Ir para pesquisar
Linha 4: Linha 4:
===Determinação do tempo de colisão===
===Determinação do tempo de colisão===
Os objetos a serem usados para o cálculo do tempo de colisão entre um par de partículas <math>i, j</math> serão discos de raio <math>\sigma_i</math>, <math>\sigma_j</math>, de distância denotada por <math>\sigma</math>. Portanto, segue que a condição de colisão é:  
Os objetos a serem usados para o cálculo do tempo de colisão entre um par de partículas <math>i, j</math> serão discos de raio <math>\sigma_i</math>, <math>\sigma_j</math>, de distância denotada por <math>\sigma</math>. Portanto, segue que a condição de colisão é:  
:<math>|\vec{r_i}(t + dt_{col}) - \vec{r_j}(t + dt_{col})| = \sigma</math>
:<math>|\vec{r_i}(t + dt_{ij}) - \vec{r_j}(t + dt_{ij})| = \sigma</math>
Com <math>r_i</math> sendo o vetor posição da partícula <math>i</math> e <math>dt_{col}</math> o tempo de colisão entre as partículas <math>i, j</math>. Tal condição nos leva a determinação de <math>dt_{col}</math> a partir da expressão:
Com <math>r_i</math> sendo o vetor posição da partícula <math>i</math> e <math>dt_{ij}</math> o tempo de colisão entre as partículas <math>i, j</math>. Tal condição nos leva a determinação de <math>dt_{ij}</math> a partir da expressão:
:<math>
:<math>
dt_{col} =
dt_{ij} =
   \begin{cases}
   \begin{cases}
     \infty & \quad \text{se } d < 0 \\
     \infty & \quad \text{se } d < 0 \\
Linha 14: Linha 14:
   \end{cases}
   \end{cases}
</math>
</math>
Onde <math> d \equiv (\Delta \vec{r} . \Delta \vec{v})^2 - (\Delta \vec{v} . \Delta \vec{v})(\Delta \vec{r} . \Delta \vec{r} - \sigma^2) </math>, <math> \Delta \vec{r} = \vec{r_i} - \vec{r_j} </math> e <math> \Delta \vec{v} = \vec{v_i} - \vec{v_j} </math>. Consegue-se então determinar o valor de <math> dt_{col} </math> que representa o tempo que o par de partículas <math> i, j </math> levariam para colidir. Com isso, o valor de <math> dt_{min} </math> será o menor valor de <math> dt_{col} </math>.
Onde <math> d \equiv (\Delta \vec{r} . \Delta \vec{v})^2 - (\Delta \vec{v} . \Delta \vec{v})(\Delta \vec{r} . \Delta \vec{r} - \sigma^2) </math>, <math> \Delta \vec{r} = \vec{r_i} - \vec{r_j} </math> e <math> \Delta \vec{v} = \vec{v_i} - \vec{v_j} </math>. Consegue-se então determinar o valor de <math> dt_{ij} </math> que representa o tempo que o par de partículas <math> i, j </math> levariam para colidir. Com isso, o valor de <math> dt_{min} </math> será o menor valor de <math> dt_{ij} </math>.


===Mudança de velocidade em uma colisão elástica===
===Mudança de velocidade em uma colisão elástica===

Edição das 20h46min de 18 de junho de 2016

Dinâmica molecular de potenciais descontínuos é uma abordagem computacional utilizada para determinar o movimento de partículas duras que só interagem por forças de contato. Assim, fica evidente a diferença entre o potencial Lennard-Jones pois este se baseia em uma interação de curto alcance, como é mostrado em DM: um primeiro programa. Para entender como as colisões ocorrem, conhecer a forma do potencial a ser estudado é vital. Como estamos considerando corpos rígidos, ou seja, que não sofrem deformação, percebe-se que a força de contato entre as partículas será infinita e o tempo de interação zero, o que torna impossível a descrição do problema a partir de uma integração de movimento simples. O método utilizado, a ser explicitado aqui, que resolve este problema é o evento dirigido.

Evento dirigido

A ideia do método para resolver o problema do força infinita é, ao invés de avançar o sistema em pequenos passos de tempo Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle dt} , avançar a simulação conforme as colisões forem ocorrendo. Para isso deve-se encontrar o par de partículas Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle i, j} que colidirá no menor intervalo de tempo entre todas as partículas, denotaremos tal intervalo por Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle dt_{min}} , e, então, avançar o sistema. Neste ponto teremos dois objetos colados, portanto aqui deve ser feita a mudança de velocidades de tal forma a respeitar uma colisão elástica.

Determinação do tempo de colisão

Os objetos a serem usados para o cálculo do tempo de colisão entre um par de partículas Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle i, j} serão discos de raio Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma_i} , Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma_j} , de distância denotada por Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma} . Portanto, segue que a condição de colisão é:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\vec{r_i}(t + dt_{ij}) - \vec{r_j}(t + dt_{ij})| = \sigma}

Com Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle r_i} sendo o vetor posição da partícula Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle i} e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle dt_{ij}} o tempo de colisão entre as partículas Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle i, j} . Tal condição nos leva a determinação de Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle dt_{ij}} a partir da expressão:

Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle dt_{ij} = \begin{cases} \infty & \quad \text{se } d < 0 \\ \infty & \quad \text{se } \Delta r . \Delta v > 0 \\ -\frac{\Delta \vec{r} . \Delta \vec{v} + \sqrt{d}}{\Delta \vec{v} . \Delta \vec{v}} & \quad \text{nos demais casos} \end{cases} }

Onde Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle d \equiv (\Delta \vec{r} . \Delta \vec{v})^2 - (\Delta \vec{v} . \Delta \vec{v})(\Delta \vec{r} . \Delta \vec{r} - \sigma^2) } , Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta \vec{r} = \vec{r_i} - \vec{r_j} } e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta \vec{v} = \vec{v_i} - \vec{v_j} } . Consegue-se então determinar o valor de Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle dt_{ij} } que representa o tempo que o par de partículas Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle i, j } levariam para colidir. Com isso, o valor de Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle dt_{min} } será o menor valor de Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle dt_{ij} } .

Mudança de velocidade em uma colisão elástica

Implementação computacional

Figurinhas sensacionais

Adição do campo gravitacional