Modelo de Potts 2D: mudanças entre as edições

De Física Computacional
Ir para navegação Ir para pesquisar
Linha 20: Linha 20:
\end{cases}</math>
\end{cases}</math>


Neste trabalho, o modelo de Potts foi estudado em uma rede quadrada 2D com vizinhança de von Neumann para primeiros vizinhos. A quantidade de spins no modelo é <math>N = L\times L</math> com interações ferromagnéticas com <math>J = 1</math>, favorecendo vizinhanças de spins que compartilham o mesmo valor de <math>q</math> para minimizar a energia do sistema.
Neste trabalho, o modelo de Potts foi estudado em uma rede quadrada 2D com vizinhança de von Neumann para primeiros vizinhos e condições de contorno periódicas. A quantidade de spins no modelo é <math>N = L\times L</math> com interações ferromagnéticas com <math>J = 1</math>, favorecendo vizinhanças de spins que compartilham o mesmo valor de <math>q</math> para minimizar a energia do sistema.


== Método de Monte Carlo ==
== Método de Monte Carlo ==

Edição das 22h23min de 9 de maio de 2021

Modelo de Potts

O "modelo de Potts de Q-estados" trata de um sistema de rede com N spins interagentes , onde um spin pode assumir valores discretos . Cada spin do sistema está limitado a interagir com outros spins em sua vizinhança e a energia da interação entre dois spins e é dada pelo potencial

onde é a função delta de Kronecker e é a constante de interação entre os spins. Dessa maneira, a interação entre dois spins vizinhos contabiliza um valor de energia ao sistema apenas se . A hamiltoniana do sistema é dada pela soma entre todas as interações entre spins vizinhos:

Este modelo é tido como uma generalização natural do Modelo de Ising e para o caso ambos modelos são equivalentes a menos de uma constante:

Nesse caso, a interação entre dois spins e assume a mesma dinâmica do modelo de Ising a contribuição para a energia do sistema será

Neste trabalho, o modelo de Potts foi estudado em uma rede quadrada 2D com vizinhança de von Neumann para primeiros vizinhos e condições de contorno periódicas. A quantidade de spins no modelo é com interações ferromagnéticas com , favorecendo vizinhanças de spins que compartilham o mesmo valor de para minimizar a energia do sistema.

Método de Monte Carlo

Algorítmo de Metrópolis

O primeiro algoritmo utilizado para gerar as configurações do sistema foi o algoritmo de Metropolis. O algoritmo escolhe repetidamente um novo estado para o sistema e aceitando ou rejeitando ele de acordo com uma probabilidade de aceitação de transitar de um estado antigo para o novo estado . O algoritmo que iremos descrever utiliza a dinâmica de inversão única de spins. Para o modelo de Potts, um spin é selecionado aleatoriamente e se sorteia um novo valor de , que o algoritmo irá aceitar ou não.

Temos que a condição de balanceamento detalhado é dada por [1]:

onde é a diferença de energia entre o novo e o antigo estado.

Vamos supor que tenhamos os estados e e que temos a relação de energias: . Então, a maior das duas chances de aceitação é , portanto iremos igualar essa probabilidade a 1. Para que seja respeitada, iremos definir o valor de como . Temos, assim, o algoritmo de Metropolis:

Dessa forma, sempre que tivermos um estado cuja energia seja menor do que a do estado atual, iremos aceitar a transição, mas se a energia for maior, teremos uma pequena probabilidade de trocarmos de estado.

  1. M. E. J. Newman, G. T. Barkema, "Monte Carlo Methods in Statistical Physics". Oxford University Press Inc., New York, 1999.