Difusão ambipolar em plasmas: mudanças entre as edições

De Física Computacional
Ir para navegação Ir para pesquisar
Linha 6: Linha 6:




<math> D_e = \frac{k_bT_e}{m_e\nu_e} </math> e  <math> D_i = \frac{h_bT_i}{m_i\nu_i} \qquad (1)</math> ,
<math> D_e = \frac{k_bT_e}{m_e\nu_e} </math> e  <math> D_i = \frac{h_bT_i}{m_i\nu_i} </math> ,





Edição das 21h45min de 6 de abril de 2021

Equação da difusão ambipolar

A difusão é o modo como um fluido se dilui em um meio. Estudar as equações que governam esse fenômeno e as formas de resolvê-las é de extremo interesse para a física de fluidos e de plasmas, entre outras áreas. Aqui mostramos uma resolução numérica para o caso unidimensional da difusão ambipolar de um plasma (gás formado de elétrons e íons) envolto em um gás neutro, ou seja, o caso de um plasma se espalhando por um tubo.

Diferentemente de um gás de átomos/moléculas neutros(as), os plasmas são menos livres ao se moverem por causa das interações eletromagnéticas envolvidas no movimento das cargas, como a força de Coulomb e a força magnética. Na difusão de plasmas em um gás neutro, os coeficientes de difusão dos elétrons e dos íons são tipicamente dados por


e ,


onde , , , , e , são as temperaturas, massas e frequências de colisão dos elétrons e íons com os átomos neutros. Devido à massa do elétron ser muito menor que a massa de um íon, é maior que , então quando um plasma começa a se difundir, incialmente os elétrons se espalham mais rapidamente que os íons, o que gera um campo elétrico que freia os elétron e acelera os íons. Chamamos esse processo de difusão ambipolar.

Difusao ambipolar.png [1]

Como mostrado por Shimony e Cahn[2], esse problema é descrito por uma equação de onda amortecida para a função de densidade :

,

onde e , sendo a frequência de colisão ambipolar e o coeficiente de difusão ambipolar, que pode ser escrito como [3].

Como tratamos do caso unidimensional, a equação 1 torna-se

.

O Método

A resolução numérica do problema foi baseada no artigo de Najafi e Izadi [4]. Começamos com a forma mais usual de escrever a equação da onda amortecida unidimencional

.


No nosso caso e .

Discretizando as variáveis do problema, temos que

,

.

Substituindo as derivadas que aparecem na equação por diferenças finitas, obtemos

,

,

.

Substituindo essas relações na equação 3, obtemos

.

Omitindo todos os temos de ordem e isolando , obtemos

,

sendo .

Essa é a equação para resolver o problema para , porém o problema envolve uma derivada de segunda ordem no tempo, o que faz com que precisemos saber os dois passos anteriores para calcular o próximo. Então necessitamos ainda de uma maneira de determinar a paritr de , para então calcular os demais passos. Para isso assumimos que a função é inicialmente estacionária e fazemos

.

Substituindo na equação 4 para obtemos

.

Com as equações 4 e 5, e tomando as devidas condições de contorno nas bordas (no caso desse trabalho usamos bordas fixas em 0 e também condições periódicas de contorno), podemos calcular a evolução temporal da função de densidade. Esse método é estável para e seu erro é

.

Resultados e Discussão

Aplicamos o método descrito acima para simular a evolução da densidade de um plasma se difundindo em um tubo de largura . Fizemos o plasma inicialmente concentrado na região central do tubo: para e para fora dessa região. Usamos e , que resulta em , e criamos gifs mostrando a evlução temporal da função de densidade para diferentes valores de e . Para garantir a estabilidade do método, essas constantes devem ser tais que .

Quanto à solução nas bordas, fizemos de duas manerias: A primeira foi com condições de contorno fixas em 0 () e represenda o caso em que as bordas são um sumidouro, como se fosse um tubo aberto. A segunda foi usando condições de contorno periódicas () e representa o caso de um tubo fechado.

Evolução temporal da densidade do plasma para diferentes valores de e
Alt text
Alt text
Alt text
Alt text
Evolução temporal da densidade do plasma para diferentes valores de e
Alt text
Alt text
Alt text
Alt text


Podemos observar que é o parâmetro que domina a velocidade com que que a densidade decai, o que é esperado, uma vez que um coeficiente de difusão maior faz o plasma se difundir mais rápido. Já parece estar ligado à "suavidade" da distribuição, sendo que com frequências baixas começam a aparecer diversos picos de densidade.

Programas Utilizados

Para implementar o método computacionalmente e criar os gifs foram usados códigos em python. O código abaixo é a solução para as bordas fixas em 0:

import numpy as np
import matplotlib.pyplot as plt
import imageio

dt = 0.01
dx = 0.1
L = 10
T = 50

#constantes do plasma
nu_a = 0.1
Da = 0.5

#constantes para a eq da onda
c = np.sqrt(nu_a*Da)
h = nu_a/2
s = (c*dt/dx)**2

x = np.linspace(0, L, int(L/dx)) #array com as coordenadas espaciais
t = np.linspace(0, T, int(T/dt)) #array com as coordenadas temporais
n = np.zeros((len(t), len(x)))   #matriz com a densidade n(x,t)

#fazemos o plasma inicialmente concentrado em uma regiao
for i in range(int(len(x)/4),int(3*len(x)/4)):
    n[0,i] = 1
plt.plot(x,n[0]) #plota estado inicial da funcao
plt.title(r'$\nu_a=$'+str(nu_a)+'   $D_a=$'+str(Da))
plt.xlabel('L')
plt.ylabel('n(x)')
plt.ylim([0,1.1])
plt.xlim([0,L])
plt.text(8,0.9,'T = 0.0')
plt.savefig('n_0.png')
plt.clf()

#calculamos o próximo passo considerando dn/dt = 0 inicialmente    
for i in range(1,len(x)-1):
    n[1,i] = 0.5*(2*(1-s)*n[0,i] + s*(n[0,i+1] + n[0,i-1]))

#calculamos a posterior evolucao
for k in range(1, len(t)-1):
    for i in range(1,len(x)-1): #isso fixa os contornos em 0
        n[k+1,i] = (1/(1+h*dt))*(2*(1-s)*n[k,i] - (1-h*dt)*n[k-1,i] + s*(n[k,i+1] + n[k,i-1]))
    if k*dt - int(k*dt) == 0: #plota figuras para valores inteiros de t
       plt.plot(x,n[k])
       plt.title(r'$\nu_a=$'+str(nu_a)+'   $D_a=$'+str(Da))
       plt.xlabel('L')
       plt.ylabel('n(x)')
       plt.xlim([0,L])
       plt.ylim([0,1.1])
       plt.text(8,0.9,'T = '+str(k*dt))
       plt.savefig('n_'+str(int(k*dt))+'.png')
       plt.clf()
    
#criamos gifs usando os plots
images = []
for k in range(T):
    images.append(imageio.imread('n_'+str(k)+'.png'))
imageio.mimsave('difusao_ambipolar_'+str(nu_a)+'_'+str(Da)+'.gif', images, format='GIF', duration=1./10)

O código para as condições de contorno periódicas é levemente diferente, exigindo o acrécimo de duas duas linhas dentro do terceiro loop. Vale notar que aqui não nos preocupamos com o contorno no cáculo de porque a função nos contornos é 0 nos primeiros passos, independente de adotarmos ou não contornos periódicos.

import numpy as np
import matplotlib.pyplot as plt
import imageio

dt = 0.01
dx = 0.1
L = 10
T = 50

#constantes do plasma
nu_a = 0.1
Da = 0.5

#constantes para a eq da onda
c = np.sqrt(nu_a*Da)
h = nu_a/2
s = (c*dt/dx)**2

x = np.linspace(0, L, int(L/dx)) #array com as coordenadas espaciais
t = np.linspace(0, T, int(T/dt)) #array com as coordenadas temporais
n = np.zeros((len(t), len(x)))   #matriz com a densidade n(x,t)

#fazemos o plasma inicialmente concentrado em uma regiao
for i in range(int(len(x)/4),int(3*len(x)/4)):
    n[0,i] = 1
plt.plot(x,n[0]) #plota estado inicial da funcao
plt.title(r'$\nu_a=$'+str(nu_a)+'   $D_a=$'+str(Da))
plt.xlabel('L')
plt.ylabel('n(x)')
plt.ylim([0,1.1])
plt.xlim([0,L])
plt.text(8,0.9,'T = 0.0')
plt.savefig('n_0.png')
plt.clf()

#calculamos o próximo passo considerando dn/dt = 0 inicialmente    
for i in range(1,len(x)-1):
    n[1,i] = 0.5*(2*(1-s)*n[0,i] + s*(n[0,i+1] + n[0,i-1]))

#calculamos a posterior evolucao
for k in range(1, len(t)-1):
    for i in range(1,len(x)-1):
        n[k+1,i] = (1/(1+h*dt))*(2*(1-s)*n[k,i] - (1-h*dt)*n[k-1,i] + s*(n[k,i+1] + n[k,i-1]))
    #condicoes de contorno periodicas
    n[k+1,0] = (1/(1+h*dt))*(2*(1-s)*n[k,0] - (1-h*dt)*n[k-1,0] + s*(n[k,1] + n[k,-1]))
    n[k+1,-1] = (1/(1+h*dt))*(2*(1-s)*n[k,-1] - (1-h*dt)*n[k-1,-1] + s*(n[k,0] + n[k,-2]))
    if k*dt - int(k*dt) == 0: #plota figuras para valores inteiros de t
       plt.plot(x,n[k])
       plt.title(r'$\nu_a=$'+str(nu_a)+'   $D_a=$'+str(Da))
       plt.xlabel('L')
       plt.ylabel('n(x)')
       plt.xlim([0,L])
       plt.ylim([0,1.1])
       plt.text(8,0.9,'T = '+str(k*dt))
       plt.savefig('n_'+str(int(k*dt))+'.png')
       plt.clf()
    
#criamos gifs usando os plots
images = []
for k in range(T):
    images.append(imageio.imread('n_'+str(k)+'.png'))
imageio.mimsave('difusao_ambipolar_'+str(nu_a)+'_'+str(Da)+'PBC.gif', images, format='GIF', duration=1./10)


Referências

  1. http://www.enigmatic-consulting.com/semiconductor_processing/CVD_Fundamentals/plasmas/ambipolar_diffusion.html
  2. Z. Shimony and J. H. Cahn, "Time-dependent ambipolar diffusion waves", The Physics of Fluids 8, 1704 (1965)
  3. . http://uigelz.eecs.umich.edu/classes/pub/eecs517/handouts/derivation_ambipolar_diffusion_v02.pdf
  4. H. Najafi and F. Izadi, "Comparison of two finite-difference methods for solving the damped wave equation", viXra, 2016