Equações de Laplace e Poisson: mudanças entre as edições
Sem resumo de edição |
Sem resumo de edição |
||
Linha 1: | Linha 1: | ||
'''Grupo: Augusto M Giani e Henrique Padovani''' | '''Grupo: Augusto M Giani e Henrique Padovani''' | ||
O objetivo deste trabalho é implementar os métodos de Relaxação, Gauss-Seidel e SOR ( | O objetivo deste trabalho é implementar os métodos de Relaxação, Gauss-Seidel e SOR (Simultaneous OverRelaxation) em problemas de eletroestática, resolvidos pelas equações de Laplace e Poisson. Também temos como objetivo comparar seus resultados: erro entre os métodos e a solução analítica, tempo para estabilização das soluções. | ||
== Equações de Laplace e Poisson == | == Problema físico envolvendo as Equações de Laplace e Poisson == | ||
A Equação de Laplace descreve o Potencial Elétrico (<math>\Phi</math>) de uma determinada região num espaço que não possui nenhuma densidade de carga elétrica (corpo carregado): | A Equação de Laplace descreve o Potencial Elétrico (<math>\Phi</math>) de uma determinada região num espaço que não possui nenhuma densidade de carga elétrica (corpo carregado): | ||
Linha 31: | Linha 31: | ||
Com isso: <math>\frac{\partial f}{\partial t} = 0</math>, e chegando assim à Equação de Laplace e possibilitando chegar na discretização da Equação de Poisson. Então basicamente utiliza-se da mesma discretização de uma equação de difusão, porém a evolução temporal só serve para convergirmos à solução da Equação de Laplace com as condições iniciais que propomos. | Com isso: <math>\frac{\partial f}{\partial t} = 0</math>, e chegando assim à Equação de Laplace e possibilitando chegar na discretização da Equação de Poisson. Então basicamente utiliza-se da mesma discretização de uma equação de difusão, porém a evolução temporal só serve para convergirmos à solução da Equação de Laplace com as condições iniciais que propomos. | ||
Os métodos de Jacobi, Gauss-Seidel e SOR são considerados '''Métodos de Relaxação'''. | |||
== | == Discretizações == | ||
=== Método de Jacobi "FTCS" === | === Método de Jacobi "FTCS" === | ||
=== Equação de Laplace <math>\nabla^2\Phi = 0</math> === | ==== Equação de Laplace <math>\nabla^2\Phi = 0</math> ==== | ||
Para equação de Laplace partimos de: | Para equação de Laplace partimos de: | ||
<center><math>\frac{\partial \Phi}{\partial t} = \mu \left(\frac{\partial^{2}\Phi}{\partial x^2} + \frac{\partial^{2}\Phi}{\partial y^2} \right)</math></center> | <center><math>\frac{\partial \Phi}{\partial t} = \mu \left(\frac{\partial^{2}\Phi}{\partial x^2} + \frac{\partial^{2}\Phi}{\partial y^2} \right)</math></center> | ||
Linha 53: | Linha 54: | ||
Para o algoritmo de Jacobi (Relaxação) escolhemos o valor de <math>\frac{1}{4}</math> e com isso resulta na equação final: | Para o algoritmo de Jacobi (Relaxação) escolhemos o valor de <math>\frac{1}{4}</math> e com isso resulta na equação final: | ||
<center><math>\Phi^{n+1}_{i,j} = \frac{1}{4} \left(\Phi^{n}_{i-1,j} + \Phi^{n}_{i+1,j} + \Phi^{n}_{i,j-1} + \Phi^{n}_{i,j+1} \right)</math></center> | <center><math>\color{MidnightBlue}\Phi^{n+1}_{i,j} = \frac{1}{4} \left(\Phi^{n}_{i-1,j} + \Phi^{n}_{i+1,j} + \Phi^{n}_{i,j-1} + \Phi^{n}_{i,j+1} \right)</math></center> | ||
onde '''n''' representa o passo no tempo, '''i''' representa o passo em X e '''j''' representa o passo em Y. A constante <math>\mu</math> somente representava uma similaridade com a equação de difusão para demonstrar que este valor não interfere na equação final, ele sequer aparece (portanto podemos desconsiderá-lo, como faremos na equação de Poisson). | onde '''n''' representa o passo no tempo, '''i''' representa o passo em X e '''j''' representa o passo em Y. A constante <math>\mu</math> somente representava uma similaridade com a equação de difusão para demonstrar que este valor não interfere na equação final, ele sequer aparece (portanto podemos desconsiderá-lo, como faremos na equação de Poisson). | ||
=== Equação de Poisson <math>\nabla^2\Phi = \frac{-\rho(x,y)}{\epsilon_0}</math> === | ==== Equação de Poisson <math>\nabla^2\Phi = \frac{-\rho(x,y)}{\epsilon_0}</math> ==== | ||
Partindo de: | Partindo de: | ||
Linha 73: | Linha 74: | ||
E finalmente, aplicando a condição de estabilidade <math>\frac{\Delta t} {\Delta x^2} = \frac{1}{4}</math> e cancelando os termos <math>\Phi^{n}_{i,j}</math>: | E finalmente, aplicando a condição de estabilidade <math>\frac{\Delta t} {\Delta x^2} = \frac{1}{4}</math> e cancelando os termos <math>\Phi^{n}_{i,j}</math>: | ||
<center><math>\Phi^{n+1}_{i,j} = \frac{1}{4}\left(\Phi^{n}_{i-1,j} + \Phi^{n}_{i+1,j} + \Phi^{n}_{i,j-1} + \Phi^{n}_{i,j+1} + \frac{\Delta x^2 \rho_{i,j}}{\epsilon_0}\right)</math></center> | <center><math>\color{blue} \Phi^{n+1}_{i,j} = \frac{1}{4}\left(\Phi^{n}_{i-1,j} + \Phi^{n}_{i+1,j} + \Phi^{n}_{i,j-1} + \Phi^{n}_{i,j+1} + \frac{\Delta x^2 \rho_{i,j}}{\epsilon_0}\right)</math></center> | ||
=== Método de Gauss-Seidel === | === Método de Gauss-Seidel === | ||
Linha 81: | Linha 82: | ||
O Método de Gauss-Seidel adianta (no tempo) a chegada da solução estacionária, utilizando termos que já foram calculados num passo anterior de tempo para calcular o ponto atual, respectivamente para equação de Laplace e Poisson, utilizamos na nossa implementação: | O Método de Gauss-Seidel adianta (no tempo) a chegada da solução estacionária, utilizando termos que já foram calculados num passo anterior de tempo para calcular o ponto atual, respectivamente para equação de Laplace e Poisson, utilizamos na nossa implementação: | ||
<center><math>\Phi^{n+1}_{i,j} = \frac{1}{4}\left(\Phi^{n+1}_{i-1,j} + \Phi^{n}_{i+1,j} + \Phi^{n+1}_{i,j-1} + \Phi^{n}_{i,j+1}\right)</math></center> | <center><math>\color{blue}\Phi^{n+1}_{i,j} = \frac{1}{4}\left(\Phi^{n+1}_{i-1,j} + \Phi^{n}_{i+1,j} + \Phi^{n+1}_{i,j-1} + \Phi^{n}_{i,j+1}\right)</math></center> | ||
e | e | ||
<center><math>\Phi^{n+1}_{i,j} = \frac{1}{4}\left(\Phi^{n+1}_{i-1,j} + \Phi^{n}_{i+1,j} + \Phi^{n+1}_{i,j-1} + \Phi^{n}_{i,j+1} + \frac{\Delta x^2 \rho_{i,j}}{\epsilon_0}\right)</math></center> | <center><math>\color{blue}\Phi^{n+1}_{i,j} = \frac{1}{4}\left(\Phi^{n+1}_{i-1,j} + \Phi^{n}_{i+1,j} + \Phi^{n+1}_{i,j-1} + \Phi^{n}_{i,j+1} + \frac{\Delta x^2 \rho_{i,j}}{\epsilon_0}\right)</math></center> | ||
=== Método SOR, | === Método SOR, Simultaneous Overrelaxation === | ||
Como pode-se notar nas equações (é mais intuitivo na forma discretizada da Equação de Laplace), a atualização de um ponto <math>\Phi^{n+1}_{i,j}</math> é feita através de uma espécie de "média" dos pontos, no tempo anterior, ao seu arredor (o ponto acima, à direita, à esquerda e abaixo na matriz dos <math>\Phi_{i,j}</math>). O método introduz nesse cálculo de "média" (ainda no método de Gauss-Seidel), pesos para a contribuição dos pontos da vizinhança e também um peso para o próprio ponto no tempo anterior. Respectivamente para a Equação de Laplace e para Poisson: | |||
<center><math>\color{blue}\Phi^{n+1}_{i,j} = \left(1-\omega\right)\Phi^{n}_{i,j} + \frac{\omega}{4}\left(\Phi^{n+1}_{i-1,j} + \Phi^{n}_{i+1,j} + \Phi^{n+1}_{i,j-1} + \Phi^{n}_{i,j+1}\right)</math></center> | |||
e | |||
<center><math>\color{blue}\Phi^{n+1}_{i,j} = \left(1-\omega\right)\Phi^{n}_{i,j} \frac{\omega}{4}\left(\Phi^{n+1}_{i-1,j} + \Phi^{n}_{i+1,j} + \Phi^{n+1}_{i,j-1} + \Phi^{n}_{i,j+1} + \frac{\Delta x^2 \rho_{i,j}}{\epsilon_0}\right)</math></center> | |||
As equações em Azul descritas acima foram as que implementamos em nossos códigos. | |||
== Resultados == | == Resultados == | ||
=== Implementação === | |||
Implementamos as simulações em Python3, no ambiente Colab da Google. Junto com as soluções numéricas também implementamos a solução analítica de um problema para compararmos com a solução numérica | |||
Os códigos se encontram no final desta Wiki, mas uma observação geral é que além de utilizarmos as equações destacadas em Azul para implementar as soluções, é importante lembrar que o resultado final só é atingido quando iteramos as soluções no "tempo", então é preciso iterar os elementos da matriz no espaço, mas também fazer ela evoluir com o tempo, exemplo para o algoritmo de Jacobi, Equação de Laplace: | |||
<source lang="haskell" line='line'> | |||
### Exemplo da evolução temporal no método de relaxação ### | |||
# P é a matriz do potencial no tempo n | |||
# Q é a matriz do potencial no tempo n+1 | |||
while t < tmax: # Loop temporal | |||
for i in range(1,L+1): # Loop em x | |||
for j in range(1,L+1): # Loop em y | |||
Q[i][j] = (P[i+1][j] + P[i-1][j] + P[i][j+1] + P[i][j-1])/4 | |||
P = Q.copy() | |||
t = t + td | |||
plt.plot(x,y,P) | |||
</source> | |||
Como pode-se ver, somente é plotado um gráfico, ou somente se é considerado como resultado final o estado final do vetor '''P''', depois que ele sai do loop '''while'''. Esta lógica foi usada para todos os métodos que aplicamos. | |||
=== Resultados obtidos === | |||
blablalblala |
Edição das 19h06min de 28 de março de 2021
Grupo: Augusto M Giani e Henrique Padovani
O objetivo deste trabalho é implementar os métodos de Relaxação, Gauss-Seidel e SOR (Simultaneous OverRelaxation) em problemas de eletroestática, resolvidos pelas equações de Laplace e Poisson. Também temos como objetivo comparar seus resultados: erro entre os métodos e a solução analítica, tempo para estabilização das soluções.
Problema físico envolvendo as Equações de Laplace e Poisson
A Equação de Laplace descreve o Potencial Elétrico () de uma determinada região num espaço que não possui nenhuma densidade de carga elétrica (corpo carregado):
ou na sua versão em 2 dimensões:
Quando neste determinado espaço, delimitado pelas condições de contorno, existe uma densidade de carga, o campo já não se iguala mais à zero, mas sim à densidade de cargas dentro daquela região, sendo descrito agora pela Equação de Poisson:
ou na sua versão em 2 dimensões:
Método de Relaxação
Como podemos ver ambas as equações não dependem do tempo, porém podemos usar um truque para resolver estas equações aplicando o método **FTCS** (Forward Time Central Space) em uma equação parecida, e fazer a evoluçao temporal durar tempo sufiente para a solução convergir (). Esta operação é chamada de Método de Relaxação.
O que usamos para convergir à solução da Equação de Laplace foi uma equação de difusão genérica:
Fazendo , para a equação de difusão temos a intuição que dada condição inicial estacionária, a solução não diverge e "relaxa" para uma função que não depende mais do tempo:
Com isso: , e chegando assim à Equação de Laplace e possibilitando chegar na discretização da Equação de Poisson. Então basicamente utiliza-se da mesma discretização de uma equação de difusão, porém a evolução temporal só serve para convergirmos à solução da Equação de Laplace com as condições iniciais que propomos. Os métodos de Jacobi, Gauss-Seidel e SOR são considerados Métodos de Relaxação.
Discretizações
Método de Jacobi "FTCS"
Equação de Laplace
Para equação de Laplace partimos de:
Discretizando, primeiro chegamos que:
Seguindo mesmo procedimento do método de FTCS, temos a mesma condição de estabilidade:
No nosso algoritmo ultizamos então obtivemos a condição de estabilidade:
Para o algoritmo de Jacobi (Relaxação) escolhemos o valor de e com isso resulta na equação final:
onde n representa o passo no tempo, i representa o passo em X e j representa o passo em Y. A constante somente representava uma similaridade com a equação de difusão para demonstrar que este valor não interfere na equação final, ele sequer aparece (portanto podemos desconsiderá-lo, como faremos na equação de Poisson).
Equação de Poisson
Partindo de:
chegamos em:
Para nosso problema , então multiplicando os dois lados por , chegamos em:
E finalmente, aplicando a condição de estabilidade e cancelando os termos :
Método de Gauss-Seidel
Como pode-se notar, o termo que distingue a Equação de Laplace para a Equação de Poisson é apenas o termo que soma ao lado direito da equação. Para demonstrar as próximas discretizações, as deduções foram deixadas de lado pelo fato de que são irrelevantes, tendo entendido de onde vem as equações.
O Método de Gauss-Seidel adianta (no tempo) a chegada da solução estacionária, utilizando termos que já foram calculados num passo anterior de tempo para calcular o ponto atual, respectivamente para equação de Laplace e Poisson, utilizamos na nossa implementação:
e
Método SOR, Simultaneous Overrelaxation
Como pode-se notar nas equações (é mais intuitivo na forma discretizada da Equação de Laplace), a atualização de um ponto é feita através de uma espécie de "média" dos pontos, no tempo anterior, ao seu arredor (o ponto acima, à direita, à esquerda e abaixo na matriz dos ). O método introduz nesse cálculo de "média" (ainda no método de Gauss-Seidel), pesos para a contribuição dos pontos da vizinhança e também um peso para o próprio ponto no tempo anterior. Respectivamente para a Equação de Laplace e para Poisson:
e
As equações em Azul descritas acima foram as que implementamos em nossos códigos.
Resultados
Implementação
Implementamos as simulações em Python3, no ambiente Colab da Google. Junto com as soluções numéricas também implementamos a solução analítica de um problema para compararmos com a solução numérica
Os códigos se encontram no final desta Wiki, mas uma observação geral é que além de utilizarmos as equações destacadas em Azul para implementar as soluções, é importante lembrar que o resultado final só é atingido quando iteramos as soluções no "tempo", então é preciso iterar os elementos da matriz no espaço, mas também fazer ela evoluir com o tempo, exemplo para o algoritmo de Jacobi, Equação de Laplace:
### Exemplo da evolução temporal no método de relaxação ###
# P é a matriz do potencial no tempo n
# Q é a matriz do potencial no tempo n+1
while t < tmax: # Loop temporal
for i in range(1,L+1): # Loop em x
for j in range(1,L+1): # Loop em y
Q[i][j] = (P[i+1][j] + P[i-1][j] + P[i][j+1] + P[i][j-1])/4
P = Q.copy()
t = t + td
plt.plot(x,y,P)
Como pode-se ver, somente é plotado um gráfico, ou somente se é considerado como resultado final o estado final do vetor P, depois que ele sai do loop while. Esta lógica foi usada para todos os métodos que aplicamos.
Resultados obtidos
blablalblala