Mínimos Quadrados: mudanças entre as edições
Sem resumo de edição |
Sem resumo de edição |
||
| Linha 184: | Linha 184: | ||
</pre> | </pre> | ||
=Ajuste ponderado= | =Ajuste ponderado= | ||
Dependendo da situação, convém fazer um ajuste levando em conta o erro associado a cada ponto, i.e., atribuindo maior peso para pontos com um erro baixo e menor peso para os pontos onde o erro é sabidamente maior.Ou seja, se definirmos <math>w_i</math> como o peso associado ao ponto <math>(X_i,Y_i)</math>, gostaríamos que ele seja maior quanto menor for o erro associado a este ponto. | Dependendo da situação, convém fazer um ajuste levando em conta o erro associado a cada ponto, i.e., atribuindo maior peso para pontos com um erro baixo e menor peso para os pontos onde o erro é sabidamente maior. Ou seja, se definirmos <math>w_i</math> como o peso associado ao ponto <math>(X_i,Y_i)</math>, gostaríamos que ele seja maior quanto menor for o erro associado a este ponto. | ||
Se <math>S_{y_i}</math> é o erro associado a este ponto, e considerando que o ajuste proposto é tal que minimiza a distância quadrática, podemos definir então <math>w_i</math> como: | Se <math>S_{y_i}</math> é o erro associado a este ponto, e considerando que o ajuste proposto é tal que minimiza a distância quadrática, podemos definir então <math>w_i</math> como: | ||
<math>w_i=S_{y_i}^{-2}</math> | <math>w_i=S_{y_i}^{-2}</math> | ||
E | E o resíduo <math>\chi^2</math>, para o cálculo do ajuste ponderado, será dada por: | ||
<math>\chi = \sum_{i=1}^N (Y_i - a - b X_i)^{2}w_i</math> | <math>\chi^2 = \sum_{i=1}^N (Y_i - a - b X_i)^{2}w_i</math> | ||
Aplicando o mesmo procedimento anterior para minimizar <math> \chi </math>, obtemos as equações | Aplicando o mesmo procedimento anterior para minimizar <math> \chi^2 </math>, obtemos as equações | ||
:<math> \begin{bmatrix} | :<math> \begin{bmatrix} | ||
| Linha 201: | Linha 201: | ||
E, portanto, os valores de <math>a</math> e <math>b</math> são: | E, portanto, os valores de <math>a</math> e <math>b</math> são: | ||
<math>a = [Yw][X^2w] - [XYw][Xw] / \Delta</math> | <math>a = [Yw][X^2w] - [XYw][Xw] / \Delta</math> | ||
| Linha 208: | Linha 206: | ||
<math>b = [w][XYw] - [Xw][Yw] / \Delta</math> | <math>b = [w][XYw] - [Xw][Yw] / \Delta</math> | ||
com <math>\Delta</math>: | |||
<math>\Delta = [w][X^2w] - [Xw]^2</math> | |||
=Erro dos coeficientes= | =Erro dos coeficientes= | ||
| Linha 264: | Linha 265: | ||
<math>\Delta b = \Delta y \sqrt{\frac{1}{N\sigma^2}}</math> | <math>\Delta b = \Delta y \sqrt{\frac{1}{N\sigma^2}}</math> | ||
Por tanto, três fatores determinam a qualidade do ajuste: | |||
* E erro das medidas (<math>\Delta y</math>) que deve ser minimizado, porem está geralmente limitado pelo instrumento utililizado | |||
* O número de medidas <math>N</math>, quanto maior, melhor, porem vemos que o erro dos coeficientes diminui com a raiz dele | |||
* Por último, a dispersão da viariável dependente x (<math>\sigma</math>), também quanto maior, melhor | |||
Edição das 19h45min de 2 de julho de 2018
Este o nome que se da ao ajuste ou fitting de uma função (polinômio) a um conjunto de dados.
Se Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle (X_i, Y_i)}
com representam o conjunto de dados (N) obtidos de um experimento (instrumento) ou
de uma observação (por exemplo, em pesquisa de opinião ou censo) ou de uma simulação numérica.
E se suspeitamos que existe uma correlação entre os X (variável independente ou de entrada, controlada pelo experimento)
e os Y (cuja dependência com X queremos testar), primeiro colocamos os pontos num gráfico para ver se o conjunto forma
uma nuvem dispersa (quando não existe correlação aparente, isto é X e Y não conformam uma função), ou se existe
correlação (os pontos parecem estar sobre alguma curva).
Equação linear
Sendo que um experimento foi realizado e temos pontos, como descrito acima, e consideramos que um ajuste linear é coerente, uma reta deve ser construída para melhor representar estes pontos. Como mostrado na figura a baixo, para cada ponto, teremos um erro , que é definido como a distância entre o ponto experimental e a curva (reta neste caso) teórica que desejamos ajustar, ou seja,
- ,
onde
é a função que representa a curva de melhor ajuste.
Para encontrar a reta que melhor se ajusta aos dados experimentais, desejamos minimizar o erro . Como o erro pode ter tanto valores negativos quanto positivos, o que importa é minimizar o valor absoluto de . Isto poderia ser feito minimizando módulo de , mas como a função módulo tem uma descontinuidade, é mais fácil minimizar o quadrado do erro. Para isto, definimos:
- ,
assim
- .
Para obter a melhor reta que se ajusta aos dados experimentais, temos que minimizar em relação às constantes da função :
- .
Como a reta possui apenas dois coeficientes, para o ajuste linear temos duas equações:
e
- .
Derivando as equações acima, temos que
e
- .
Assim,
e
- .
Lembre-se de que os valores e são conhecidos (são dados do problema). Desse modo, terminamos com um sistema linear para resolver, que na notação matricial fica
- .
Cuidado com o fato que e . Após construir a matriz, resolva com o método que mais lhe agrade (ha diversos métodos de solução de sistemas lineares, tais como a Regra de Cramer ou a eliminação Gaussiana).
Equação quadrática
Utilizando o mesmo método descrito para um ajuste linear, considerando que o melhor ajuste para um conjunto de pontos seja uma curva proveniente de função quadrática, temos que a função é dada por
- .
Desse modo, a soma do quadrado do erro fica
- .
Após algumas contas, como feito na seção anterior, temos o sistema linear de 3 equações e 3 incógnitas para resolver:
- .
Fique atento ao fato de que
- .
Polinômio de grau n
Generalizando o procedimento acima, apresentado para polinômios de grau 1 e 2, podemos ajustar um conjunto de pontos com um polinômio de um grau específico . Assim, a função será descrita por
e a soma dos quadrados do erro é dada por
- .
Ao final do procedimento, teremos um sistema linear de equações e incógnitas para resolver. O resultado deste sistema são os coeficientes : que compõem o polinômio que melhor se ajusta aos dados experimentais.
Outros tipos de funções
Dependendo do tipo de experimento, podem haver outras relações entre os pontos, como funções exponenciais.
Exponencial 1
Se os dados de um experimento se ajustarem bem a uma função exponencial do tipo:
- ,
definimos uma nova função :
- .
Assim, recaímos no problema do ajuste linear recém visto:
- , com e .
Exponencial 2
Se a função exponencial for do tipo:
- ,
supondo Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)>0} , definimos:
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle f_2(x) = \ln(f(x)) = \ln(\alpha_1) + x\ln(\alpha_2)} .
Assim, como no caso anterior, voltamos para o problema de ajuste linear:
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle f_2(x) = c_1 + c_2x} ,
com Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle c_1 = \ln(\alpha_1) } e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle c_2=\ln(\alpha_2)} .
Algébrica
Se a função for do tipo:
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x) = \alpha_1 x^{\alpha_2}} ,
com Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)>0} e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle x>0} , definimos:
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle f_2(x) = \ln(f(x)) = \ln(\alpha_1) + \alpha_2\ln(x)} .
e assim
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle f_2(x) = c_1 + c_2\ln(x)} ,
onde Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle c_1 = \ln(\alpha_1)} e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle c_2 = \alpha_2} . Note também que os valores de x devem ser transformados em Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ln(x)} para ajustar os pontos.
Código FORTRAN
A seguir vemos uma possível implementação do método em linguagem F90.
Observem a simplicidade do mesmo:
! programa fortran para ajuste linear de conjunto de dados
Implicit none
Real :: xi,yi, x,y,xy,x2
Real :: det,a,b
n = 0; x = 0; y = 0; xy = 0; x2 = 0
Do
Read(*,*,end=100) xi,yi
n = n + 1 ! soma do numero de pontosd
x = x + xi; y = y + yi ! somatorio dos x e y
x2 = x2 + xi**2; xy = xy + xi*y ! somatorio dos x**2 e x*y <- cuidado ha um erro aqui (compila mas ...
End Do
100 det = n*x2 - x**2
a = y*x2 - xy*x / det ! <- outro erro aqui
b = ... / det ! fica como exercicio
print*, 'a=', a, 'b=', b
end
Ajuste ponderado
Dependendo da situação, convém fazer um ajuste levando em conta o erro associado a cada ponto, i.e., atribuindo maior peso para pontos com um erro baixo e menor peso para os pontos onde o erro é sabidamente maior. Ou seja, se definirmos Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle w_i} como o peso associado ao ponto Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle (X_i,Y_i)} , gostaríamos que ele seja maior quanto menor for o erro associado a este ponto. Se Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle S_{y_i}} é o erro associado a este ponto, e considerando que o ajuste proposto é tal que minimiza a distância quadrática, podemos definir então Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle w_i} como:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle w_i=S_{y_i}^{-2}}
E o resíduo Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi^2} , para o cálculo do ajuste ponderado, será dada por:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi^2 = \sum_{i=1}^N (Y_i - a - b X_i)^{2}w_i}
Aplicando o mesmo procedimento anterior para minimizar Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi^2 } , obtemos as equações
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{bmatrix} a[w] + b[Xw] & = &[Yw] \\ a[Xw] + b[X^2w] & = & [XYw] \end{bmatrix}}
E, portanto, os valores de Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle a} e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle b} são:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle a = [Yw][X^2w] - [XYw][Xw] / \Delta}
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle b = [w][XYw] - [Xw][Yw] / \Delta}
com Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta} :
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta = [w][X^2w] - [Xw]^2}
Erro dos coeficientes
Vimos como obter os coeficientes (a e b para uma reta) do ajuste de um conjunto de dados.
Também como fazer esse ajuste quando os erros na variável dependente y não são todos iguais.
Mas como saber se esses coeficientes são "bons". Ou seja, que margem de erro eles tem.
Intuitivamente sabemos que quanto maior seja a dispersão dos Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle y_i}
em volta
da curva do ajuste, maior será nossa incerteza sobre os coeficientes.
Vamos ver como traduzir isso de forma quantitativa. Voltando as expressões dos coeficientes a e b, eles são funções de Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_i} e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle y_i} , onde só os segundos são considerados como fonte de erro. Assim para ver como o erro neles propaga-se para os coeficientes, escrevemos:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle a = a(y_i) \Rightarrow \frac{\partial a}{\partial y_i} = \frac{1}{\Delta} \frac{\partial }{\partial y_i} \left\{[Yw][X^2w] - [XYw][Xw]\right\}}
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial a}{\partial y_i} = \frac{1}{\Delta}\left\{ w_i[X^2w] - x_i w_i [Xw]\right\}}
pois só os termos com y contribuem para a derivada. e como os Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle y_i} aparecem somados, ao derivar respeito do i-esimo sobra apenas o que multiplica ele
Para incluir o efeito do erro de cada y_i deveriamos somar i de 1 a N, mas como o erro pode ser para mais o menos fazemos uma media quadrática deles:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta a = \sqrt{\sum_{i=1}^N \left( \frac{\partial a}{\partial y_i} \Delta y_i \right)^2}}
onde: Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\frac{\partial a}{\partial y_i}\Delta y_i \right)^2 = \frac{1}{\Delta^2} \left\{ w_i^2[X^2w]^2 + x_i^2 w_i^2 [Xw]^2 - 2w_i[X^2w] x_i w_i [Xw]\right\}w_i^{-1}}
o somatório fica:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{\Delta^2} \sum_{i=1}^N \left(w_i[X^2w]^2 + x_i^2 w_i [Xw]^2 - 2 [X^2w] x_i w_i [Xw]\right) = \frac{1}{\Delta^2} \left([w][X^2w]^2 + [X^2w][Xw]^2 - 2 [X^2w][Xw][Xw]\right)}
e com mais algumas simplificações chegamos a simples relação:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta a = \sqrt{\frac{[X^2w]}{\Delta}}}
Analogamente para o b (que resulta ser mais fácil), se chega a:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta b = \sqrt{\frac{[w]}{\Delta}}}
Podemos interpretar essa expressões no caso sem ponderar, ou seja quando todos os erros são iguais:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle w=1/(\Delta y)^2}
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Rightarrow \Delta = w^2 (N[X^2] - [X]^2)= (w N \sigma)^2}
onde Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma^2 = <x^2> - <x>^2}
resultando:
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta a = \Delta y \sqrt{\frac{<x^2>}{N\sigma^2}}}
Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta b = \Delta y \sqrt{\frac{1}{N\sigma^2}}}
Por tanto, três fatores determinam a qualidade do ajuste:
- E erro das medidas (Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta y} ) que deve ser minimizado, porem está geralmente limitado pelo instrumento utililizado
- O número de medidas Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle N} , quanto maior, melhor, porem vemos que o erro dos coeficientes diminui com a raiz dele
- Por último, a dispersão da viariável dependente x (Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma} ), também quanto maior, melhor

