Grupo - Modelo Sznajd: mudanças entre as edições
Linha 54: | Linha 54: | ||
Regra <math>II_a</math> e <math>II_b:</math> pontos fixos com spins todos para cima ou para baixo | Regra <math>II_a</math> e <math>II_b:</math> pontos fixos com spins todos para cima ou para baixo | ||
Regra <math>II_c:</math> Para L par ten-se ou tudo para cima ou para baixo. Para L ímpar também a o ponto antiferromagnético | |||
Regra <math>III:</math> pontos fixos com spins todos para cima ou para baixo com L ímpar | |||
== Aplicações == | == Aplicações == |
Edição das 19h02min de 24 de janeiro de 2018
Introdução
O Modelo de Sznajd ou United we stand, divided we fall (USDF) é um modelo recente, proposto em 2000 para entender a dinâmica de opiniões através da física estatística. No ponto de vista de um físico, o comportamento de indivíduos a as interações entre eles constituem um nível microscópico de um sistema social. O modelo introduz o fenômeno chamado validação social:
Validação Social: Se duas pessoas compartilham da mesma opinião, os seus vizinhos começarão a concordar com elas.
Discordância Destrutiva: Se as pessoas discordam, os vizinhos começarão a argumentar com elas.
O método e Formulação Matemática
Opinião social é vinda de opiniões individuais, representadas neste modelo por spins de Ising de forma "yes" e "no". A dinâmica segue a relação da validação social:
- A cada timestep um par de sping são escolhidos para tentar mudar os seus vizinhos mais próximos
- Se , então e (validação social)
- Se , então e
No modelo, dois tipos de estados estacionários são alcançáveis: consenso completo(ferromagnético) e impasse(antiferromagnético). A principal diferença para o Ising é que a informação flui para fora. O modelo de Sznajd ou USDF tem sido modificado e utilizado em marketing, política e finanças.
Modificações
Fala-se que o estado antes mencionado, o antiferromagnetismo, pode ser considerado não realístico para representar o comportamento de indivíduos em uma sociedade. Para tentar evitar este caso, propõe-se o seguinte:
- A cada timestep um par de sping são escolhidos para tentar mudar os seus vizinhos mais próximos igual anteriomente
- Se , então e (validação social)
- Se , então e
Estas regras ficaram conhecidas como algo do tipo: "Se você não sabe o que fazer, ou faz nada ou faz qualquer coisa." É um tanto quanto óbvio que o modelo unidimensional não representa bem um sistema social e que modelos bidimensionais são bem mais realistas. Algo interessante mencionar é a atualização simultânea para sistemas de duas dimensões: uma atualização simultânea leva a uma muito maior dificuldade de atingir o estado de consenso total. Isso foi mostrado por Stauffer[1] e a rezão para isso é que alguns recebem simultaneamente distintas informações de diferentes vizinhos, o que leva a não aceitar a opinião.
Regras para rede quadrada :
- Se conjunto 2x2 de 4 vizinhos não tiverem todos os seus spins paralelos, deixam os seus oito vizinhos sem modificações
- Um par de vizinhos convence seus seis vizinhos a seguirem a sua orientação se o par de spins for paralelo.
A regra de atualização para duas dimensões pode ser obtida pela regra em uma dimensão: A regra e 1D é aplicada para cada uma das 4 cadeias de spins, como mostra a próxima figura:
Isto foi mostrado por Gallam[2]
Generalização
Para a generalização desse método para a rede quadrada x onde cada spin pode estar para cima ou para baixo e utiliza-se condições periódicas de contorno. As regras [3] esquematizadas:
Um conjunto 2x2 de quatro vizinhos é escolhido e se todos não forem paralelos, deixa os seus oito vizinhos sem mudanças. Se não, seguem duas regras:
- Os vizinhos seguem a orientação do conjunto.
- Os vizinhos seguem a orientação oposta ao conjunto.
Um par vizinho tenta convencer seus seis vizinhos a seguir a orientação do par apenas se o par tiver spins paralelos. Caso contrário, seguem três regras horizontais mas com regras verticais completamente análogas:
- Os vizinhos não mudam
- Os três vizinhos da esquerda seguem a orientação do spin da esquerda do par e os três da direita seguem o spin da direita
- Os três vizinhos da esquerda seguem a orientação do spin da direita do par e os três da direita seguem o spin da esquerda (oposto a anterior)
A regra de 1D é aplicada para cada uma das quatro linhas de quatro spins cada.
Regra pontos fixos com spins todos para cima ou para baixo
Regra sem pontos fixos
Regra e pontos fixos com spins todos para cima ou para baixo
Regra Para L par ten-se ou tudo para cima ou para baixo. Para L ímpar também a o ponto antiferromagnético
Regra pontos fixos com spins todos para cima ou para baixo com L ímpar
Aplicações
Como mencionado anteriormente, o modelo de Sznajd pode ser utilizado em política, marketing e finanças.